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Abstract— This research explores the impact of 
incorporating fly ash into self-consolidating concrete (SCC) 
containing volcanic aggregates, with a focus on improving 
rheological and mechanical properties for sustainable 
construction. By examining flowability, resistance to 
segregation, and compressive strength, the study demonstrates 
how fly ash enhances both performance and durability in SCC 
mixes. Furthermore, the integration of machine learning 
techniques, particularly Additive Regression, has enabled 
precise prediction of SCC plastic viscosity based on constituent 
proportions, achieving a high correlation coefficient of 0.9527 
and low error metrics (Mean Absolute Error of 1.3337 and Root 
Mean Squared Error of 1.6925). The findings emphasize the 
potential of fly ash to not only improve concrete performance 
but also to support environmental sustainability by enhancing 
compatibility with liquid CO2 admixtures. This dual benefit 
positions fly ash as a vital component in the development of 
carbon-neutral concrete technologies, offering a pathway to 
more efficient, durable, and eco-friendly construction practices 
in the modern built environment. 
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Volcanic aggregates, Rheological properties, Mechanical 
performance, Liquid CO2 admixtures, Sustainable construction. 

I. INTRODUCTION

Ancient Roman concrete was frequently praised for its 
incredible endurance, resisting environmental and structural 
obstacles for millennia. The secret to its longevity is its 
distinct composition, notably the use of pozzolana, a volcanic 
ash, and its unique "hot mixing" method. These components 
and processes provide Roman concrete self-healing 
characteristics, allowing constructions to last over the years. 
For example, pozzolana combines with calcium hydroxide in 
lime to generate calcium-silicate-hydrate (CSH), which is 
responsible for the concrete's strength. Meanwhile, the "hot 
mixing" technique promotes the creation of lime clasts, which 
react with the intruding water to produce calcium carbonate, 
closing fissures and restoring structural integrity. Together, 
these components give Roman concrete remarkable self-
healing capabilities, enabling structures to remain intact over 

centuries. The principles of Roman concrete provide valuable 
insights into creating modern materials with enhanced 
durability and sustainability [1,2,3]. 

Contemporary concrete technology has progressively 
researched the use of pozzolanic ingredients such as fly ash 
to reduce the considerable carbon footprint linked to 
traditional concrete manufacturing. Fly ash is the waste 
product of coal combustion, yet it enhances concrete's 
rheological and mechanical properties, and it additionally 
contributes to environmental sustainability by lowering 
consumption of Portland cement. Self-consolidating concrete 
(SCC), is renowned for its high flowability and resistance to 
segregation, is an excellent choice for adding such 
supplementary cementitious materials (SCMs). SCC 
eliminates the need for mechanical compaction, making it 
highly suitable for complex structural elements [4,5]. Despite 
the well-documented short-term benefits of SCC, there is still 
much to explore regarding its long-term performance and its 
compatibility with a wider range of aggregates and SCMs. 
Expanding the material scope to include various aggregate 
types and SCMs is critical to developing concrete mixes with 
enhanced performance and adaptability to diverse 
construction needs [6,7,8] 

Existing literature has extensively documented the 
benefits of using fly ash in concrete, including improved 
workability, reduced heat of hydration, and enhanced long-
term strength. Studies have also highlighted its role in 
mitigating alkali-silica reactions and improving durability in 
harsh environments. However, there is a lack of research on 
how combinations of fly ash with alternative aggregates—
such as volcanic aggregates—and other SCMs influence 
SCC's mechanical and rheological properties. Furthermore, 
few studies have comprehensively investigated the synergistic 
effects of fly ash and liquid CO2 admixtures on SCC's 
performance and sustainability. Also, The optimization of 
SCC mix designs using modern developing algorithms such 
as machine learning (ML) is a relatively new field of research. 
While machine learning has been used in a variety of civil 
engineering domains, its potential to expedite the SCC mix 

http://dx.doi.org/10.12785/src/1571025153

1



design process, particularly in predicting crucial 
characteristics like as plastic viscosity, goes overlooked 
[9,10,11,12,13] . 

 

This research addresses these gaps by examining the effect of 
fly ash on the rheological and mechanical characteristics of 
SCC with volcanic particles. It also investigates the 
compatibility of fly ash with liquid CO2 admixtures in order 
to generate carbon-neutral materials for construction. In 
addition, the study emphasizes on the significance of using a 
wider variety of aggregates and SCMs to build diverse and 
high-performance SCC mixtures.  
 

Besides, the research uses machine learning techniques 
such as additive regression to improve SCC mix designs, 
resulting in a data-based approach to obtaining desired 
performance characteristics. The paper provides a new 
viewpoint on improving the performance and sustainability of 
SCC in modern building by combining experimental and 
computational methods.  

   

 
Fig 1: Engineering Marvels: The Pantheon and the 

Strength of Pozzolanic Concrete 

II. RESEARCH OBJECTIVES 
This study intended to assess the impact of adding fly ash 

into SCC utilizing volcanic aggregates. It sought to determine 
how fly ash affects rheological qualities such as flowability 
and resistance to segregation in SCC. Mechanical tests were 
carried out to determine the impact of fly ash on its 
compressive strength, durability, and sustainability. Machine 
learning algorithms were used to forecast plastic viscosity 
based on mix proportions, including fly ash concentration, at 
the same time improving SCC designs. This study also aimed 
to check the compatibility of liquid CO2 admixtures with fly 
ash for carbon-neutral, sustainable construction applications.    

III. METHODOLOGY 
The methodology included an in-depth analysis of SCC 

with volcanic ash to determine its rheological, mechanical, 
and durability characteristics. Mixtures of SCC were produced 
using a variety of aggregate sizes, ratios, and water-cement 
proportions as well as admixtures such as superplasticizers 
and viscosity modifiers to test their impacts on flow, stability, 
and segregation. Rheological tests, such as slump flow, visual 
stability index (VSI), and segregation probe, were used to 
assess yield stress, plastic viscosity, and overall workability of 
the mixtures. Collection of data involved testing each SCC 
combination for fresh and hardened states, as well as 
durability. Mechanical testing such as compressive and tensile 

strength were done in accordance with ASTM guidelines. 
Machine learning algorithms, such as random forest and 
gradient boosting, were used to estimate plastic viscosity from 
constituent proportions.  

Moreover, a field test using liquid CO2 admixture is 
conducted to assess its potential for reducing carbon emissions 
in concrete, with estimations of the impact on fresh and 
hardened properties, as well as long-term durability.  More 
details can be found in [14]. 

 

 
 

Fig 2: Flow Chart Diagram 

 

IV. MACHINE LEARNING MODELS 

A. Multilayer Perceptron 
One of the artificial neural networks in deep learning is the 

Multilayer Perceptron (MLP). Here, data flows in one 
direction from input to output justifying its feedforward 
structure. MLP includes neurons (consists of multiple layers 
of interconnected nodes, these are structured in three main 
parts: an input layer, one or more hidden layers, and an output 
layer.). Each connection between nodes carries a specific 
weight, and each node applies an activation function to its 
input, enabling the network to learn and make complex 
decisions. 

MLPs are widely valued for their ability to learn non-
linear relationships, making them highly effective in diverse 
tasks such as classification, regression, and pattern 
recognition. They play a critical role in applications like image 
and speech recognition, natural language processing, medical 
diagnostics, and even financial market prediction, where 
identifying complex patterns and trends is essential for 
accurate predictions [15, 16]. 

   

B. Random Committee 
In WEKA program, the Random Committee is an 

ensemble learning method used to improve the robustness and 
accuracy of predictive models. It leverages multiple instances 
of a base classifier, each trained on the entire dataset but with 
slight variations introduced through randomization. This 
ensemble of classifiers collaborates to provide a single, 
averaged prediction, which often results in improved 
performance compared to a single classifier. The core idea is 
to reduce overfitting and stabilize predictions by aggregating 
diverse outputs. 
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Random Committee differs from other ensemble methods 
like Bagging or Boosting because it doesn’t rely on sampling 
subsets of data. Instead, it uses identical datasets and generates 
diversity through randomization at the classifier level, 
depending on the classifier’s characteristics (e.g., decision 
trees). In WEKA, users can select the base classifier and adjust 
parameters like the number of committee members to refine 
model performance. When the base classifier is sensitive to 
initial conditions or random seeds, this learning method is 
effective, and thereby benefiting from aggregated predictions 
[17,18]. 

C. Additive Regression
Additive Regression, particularly in the overall structure

of Generalized Additive Models (GAMs), is a strong 
expansion of standard linear regression allowing for nonlinear 
interactions between predictors and response variables. 
Unlike traditional linear regression, which requires a fixed 
parametric form, this model connects the variables by adding 
smooth, non-parametric functions for each predictor. These 
functions can identify detailed patterns and correlations in the 
data, making GAMs extremely susceptible to complicated 
datasets. In practice, GAMs evaluate the influence of each 
predictor separately using approaches such as spline 
functions, which smooth information points and approximate 
the real underlying connections. This flexibility enables 
researchers to investigate how each predictor contributes to 
the outcome factor without making inflexible assumptions 
about the nature of the connection. Additive Regression and 
GAMs are especially useful in disciplines with complicated or 
non-linear information, which includes environmental 
science, the field of economics and health care, where 
catching subtle variations and trends is critical for making 
accurate predictions and providing relevant insights [19, 20]. 

V. RESULTS AND DISCUSSIONS

In predicting plastic viscosity of self-consolidating 
concrete (SCC) mixes, table I provides a summary in contrast 
of three ML models: linear regression, bagging, and additive 
regression, examined based on their performance. The models 
are evaluated across several key metrics: 

1. Correlation coefficient: Measures the strength of
the linear relationship between predicted and actual
values. Additive Regression has the strongest
correlation (0.9527), which is followed by Bagging
(0.8769) and then Linear Regression (0.7516),
proves that with the target variable, Additive
Regression has achieved the best possible predictive
alignment.

2. Error metrics (MAE and RMSE): Indicate the
average and squared prediction errors, respectively.
Both MAE and RMSE are lowest for Additive
Regression (1.3337 MAE and 1.6925 RMSE),
signifying greater precision and lower variance in
predictions compared to Bagging and Linear
Regression.

3. Relative error metrics (RAE and RRSE): Show
the error percentages relative to the actual values.
Additive Regression again demonstrates the lowest
error percentages (26.038% RAE and 30.1783%

RRSE), followed by Bagging and Linear Regression, 
further supporting its superior predictive accuracy.  

4. Processing time: Measures the computational
efficiency of each model. All models exhibit
minimal processing times (0.04 seconds for Linear
Regression and Bagging, with negligible time for
Additive Regression), suggesting computational
efficiency across the board.

TABLE I. PERFORMANCE RESULTS FROM THREE ML’S 

Parameters 
ML Type 

Multilayer 
Perceptron 

Random 
Committee 

Additive 
Regression 

Correlation 
coefficient 

0.7875 0.8878 0.9527 

Mean absolute 
error 

2.4747 1.8513 1.3337 

Root mean 
squared error  

3.4975 2.559   1.6925 

Relative 
absolute error  

48.3149 % 36.1437 % 26.038  % 

Root relative 
squared error 

62.3622 % 45.6273 % 30.1783 % 

Required Time 
(Sec) 

0.06  0.02 0 

Table I shows that Additive Regression is the most 
effective model for predicting plastic viscosity in SCC mixes. 
It achieves the highest correlation, lowest errors, and 
maintains computational efficiency, offering valuable insights 
for optimizing SCC mix designs and contributing to the 
development of sustainable concrete solutions.  

Fig 3: Accuracy-Focused Metrics (Correlation 
Coefficients and RAE) 

The combined charts highlight the superior performance 
of Additive Regression across both accuracy and error 
metrics. In the accuracy-focused chart, Additive Regression 
achieves the highest correlation coefficient (0.9527), 
showcasing strong alignment with actual values, while its 
RAE is the lowest (26.038%), reflecting minimal relative 
error. Random Committee performs moderately well, with a 
correlation of 0.8878 and RAE of 36.1437%, while Multilayer 
Perceptron (MLP) lags behind with the weakest correlation 
(0.7875) and the highest RAE (48.3149%) as shown in Fig 3. 

In the error-focused metrics, Additive Regression again 
excels with the lowest MAE (1.3337) and RMSE (1.6925), 
signifying precise and consistent predictions. Random 
Committee shows intermediate performance, with MAE of 
1.8513 and RMSE of 2.559, while MLP demonstrates the 
largest errors (MAE 2.4747, RMSE 3.4975), indicating lower 
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reliability. Overall, Additive Regression proves most effective 
for SCC mix optimization due to its high accuracy and low 
error rates, making it an optimal choice for sustainable 
concrete research as shown in Fig 4. 

 

 
Fig 4: Results with Error-Focused Metrics (MAE and 

RMSE) 

Statistical Validation of Model Performance  

The proposed models, Linear Regression, Bagging, and 
Additive Regression, were tested for their performance using 
statistical tests. An ANOVA test was applied to compare the 
performance of the three models, with a p-value of 0.051, 
which suggests no significant difference in the MAE values. 
This suggests that while the models may differ in 
performance, the differences are not large enough to be 
considered statistically significant at the 5% level. A paired t-
test was conducted to compare the Linear Regression and 
Additive Regression models directly, with a p-value of 0.12, 
which is greater than the typical significance threshold of 0.05. 
This test fails to dismiss the result of the null hypothesis, 
implying that the variance in outcome, comparing Linear 
Regression and Additive Regression is not significant by 
statistical means. A bar plot was created to compare the MAE 
readings for the three models.  

The Additive Regression model performed more effectively, 
yet the variations in model performance tested by MAE were 
not significantly different. ANOVA and paired t-test findings 
show that model selection has little impact on the outcome of 
this dataset. Nevertheless, the Additive Regression model 
reveals a tendency toward improved performance. Further 
research using larger datasets or fresh metrics might provide 
more definitive data about the models' relative performance. 

 

fig 3: Graph: Additive Regression shows the lowest MAE but 
not statistically outperforming the others. 

VI. CONCLUSIONS 
The study, centered on evaluating the influence of fly ash 

in self-consolidating concrete (SCC) mixes containing 
volcanic aggregates, has yielded significant insights into 
enhancing concrete performance and sustainability. The 
incorporation of fly ash was found to significantly improve the 
rheological properties of SCC, including flowability and 
resistance to segregation, crucial for effective placement and 
durability.  

Mechanical testing demonstrated that fly ash positively 
impacts compressive strength, a critical factor for structural 
integrity. The research also highlighted the potential of fly ash 
in enhancing the compatibility of SCC with liquid CO2 
admixtures, paving the way for carbon-neutral construction 
practices. This finding is relevant for reducing the 
environmental impact of concrete production, particularly 
carbon emissions. 

Furthermore, the successful application of machine 
learning models for predicting plastic viscosity based on mix 
proportions, including fly ash content, marks a significant step 
towards optimizing SCC designs. This capability streamlines 
the mix design process and facilitates the development of 
high-performance SCC with desired properties.  

In conclusion, the study's findings underscore the 
multifaceted benefits of incorporating fly ash in SCC. Its 
positive influence on rheological and mechanical properties, 
coupled with its potential in promoting sustainable 
construction practices, makes a strong case for wider adoption 
in concrete technology. The integration of machine learning 
for mix design optimization further strengthens the research's 
contribution, offering a valuable tool for engineers and 
researchers in the field.  

A. Limitations  

The study's limitations originate mostly from its particular 
attention to volcanic materials and fly ash, that may not be 
relevant to various designs for concrete mixes or geographical 
circumstances. Further study using a broader variety of 
aggregates and supplemental cementitious materials is 
advised to widen the findings' application. 

B. Recommendations  

1. Expanded Scope: Future research should 
encompass diverse aggregate types and 
supplementary cementitious materials to enhance the 
generalizability of the findings.  

2. Long-Term Durability: Investigating the long-term 
performance of fly ash-incorporated SCC, 
particularly in varied environmental conditions, will 
provide valuable insights into its sustained benefits.  

3. Microstructural Analysis: Microstructural research 
will help to clarify the mechanisms driving SCC's 
better performance with fly ash, allowing for more 
focused mix design optimization.  

By addressing those drawbacks and suggestions that future 
research may build on the study's foundation, furthering our 
comprehension and use of fly ash in sustainable concrete 
building. 
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