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Abstract— This methodology employs Artificial Neural 
Networks (ANN) to predict the compressive strength of 3D-
printed alkali-activated geopolymers, focusing on materials 
containing fly ash (FA). Data for training is gathered through 
an extensive literature review, encompassing parameters 
relevant to FA-containing geopolymers. After meticulous 
curation, a dataset of 53 experimental records, including mix 
ratios, chemical data, and 28-day compressive strength, is 
assembled. ANN architecture determination involves trial and 
error, considering different neurons and hidden layers, and 
various training algorithms. Results reveal that Levenberg 
Marquardt (LM) models consistently exhibit lower Mean Square 
Error (MSE), signifying superior accuracy. The best-performing 
LM model (7-11-1) outperforms Bayesian Regularization (BR) 
and Scaled Conjugate Gradient (SCG) models. The ANN 
achieves optimal validation performance offering a reliable 
framework for predicting 3D-printed material strength and 
enhancing construction material performance through 
understanding input parameter interplay.  

Keywords—3D Printing, ANN, compressive strength, fly ash, 
slag.  

I. INTRODUCTION

3D printing technology for concrete presents numerous 
benefits in the field of construction. Primarily, it mitigates the 
demand for manual labor, reduces construction duration, and 
minimizes material inefficiency, thereby resulting in cost 
reductions and heightened efficacy [1]. Furthermore, it 
facilitates the creation of bespoke and environmentally 
friendly concrete components, thus contributing to the 
preservation of the environment [2]. This technology also 
allows to produce personalized structures, effectively 

diminishing the necessity for conventional design limitations 
[3]. Moreover, 3D printing in construction has the potential to 
bolster safety measures by diminishing the requirement for 
on-site construction activities [4].  

Concrete 3D printing improves the sustainability of 
building projects by reducing material waste, lowering energy 
usage, and utilizing locally accessible resources [5]. The 3D 
printing carbon footprint can be reduced through the 
supplementary cementitious materials (SCM) as replacements 
for cement [6]. Because of aluminosilicates, geopolymers are 
suitable replacement to ordinary Portland cement (OPC). Each 
substance is made up of phases that contain silica and alumina, 
making them appropriate for geopolymer synthesis. 
Aluminosilicates found in industrial by-products such as (e.g., 
kaolinite, illite, fly ash (FA), red mud, steel slag, etc.) [7]. At 
either ambient or heated temperatures, geopolymers can be 
generated by a chemical reaction between aluminosilicate and 
silica components in an alkaline activator [8]. Geopolymers, 
do not rely on calcium carbonate as a major component, 
resulting in much fewer CO2 emissions throughout the 
manufacturing process [9], [10]. As a result of its accessibility, 
energy efficiency, friendly manufacturing method, 
mechanical qualities, and durability, geopolymer cement has 
recently received a lot of attention [11]. The use of FA 
enhances the workability of the concrete, reduces 
permeability, and lowers the heat of cement hydration [12], 
[13]. It also improves the mechanical behavior of samples 
[14]. Furthermore, the small particle size of FA enhances the 
pores order of the concrete mix, limiting moisture infiltration 
and mitigating the impact of environmental attacks [11]. FA 
in 3D concrete printing can optimize silicate composite 
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properties, boost buildability, and improve flexural tensile 
strength while decreasing volumetric weight [9]. The 
environmental effect of concrete manufacturing may be 
minimized by integrating FA, making it a more sustainable 
alternative. 

The difficulties of employing 3D concrete printing for the 
building include material, strength, and printer setup limits 
[3]. These difficulties may be solved by using appropriate 
materials and improving printing settings to address concerns 
including workability, hardening time, and mechanical 
qualities [15]. strength performances and long-term behaviors 
are usual issues in 3D concrete printing [16]. Lack of 
technology, material variability, and optimization process are 
all obstacles to the advancement of 3D printing technology for 
concrete [4]. Similarly, the variety of non-standardized 
concrete details and the difficulties in creating complicated 
forms [17].  In addition, investigating the inherent correlation 
between the aforementioned factors and the mechanical 
efficacy of 3D printing through experimental means proves to 
be financially burdensome and time-consuming. One feasible 
resolution involves employing data-driven methodologies 
such as machine learning (ML) to prognosticate the 
performance of 3D printing based on the provided factors and 
divulge their underlying relationship. 

Compressive strength is an essential characteristic of 
concrete, and it is commonly used to estimate other qualities; 
nonetheless, design of concrete buildings is primarily 
dependent on compressive strength. Several studies have 
investigated the impact of 3D printing on the compressive 
strength of FA-based materials for construction. FA is utilized 
in alkali-activated mixes for 3D printing to improve 
buildability and form preservation by affecting the mixture's 
yield stress, viscosity, and thixotropic buildup [18]. The 
inclusion of fly ash as a binder in concrete resulted in a 
compressive strength of 45MPa and a 15% reduction in water 
absorption [19]. Another study found that the best FA 
replacement level for high compressive strength was between 
15% and 30%, whereas the best bond strength was reached 
with 10% to 15% fly ash [20]. At high levels, lengthy set 
periods and delayed strength development can lead to poor 
early-age strengths, which can be remedied by introducing 
steel slag [21]. These differences are mostly attributable to 
that the compressive strength of materials containing FA is 
affected by a number of parameters, including the water-to-
cementitious materials ratio, the chemical composition of FA, 
its pozzolanic activity, the amount of FA replacement, and the 
mixing design. 

The evaluation of the dependence of compressive strength 
on each specific factor requires the use of intricate 
mathematical computations, which have been successfully 
addressed due to the implementation of computer systems. 
One of the computational techniques utilized to ascertain the 
comprehensive correlation between plentiful and intricate data 
is the artificial neural network (ANN). An ANN possesses the 
capability to replicate virtually any complicated association 
between the inputs and outputs [22], [23]. The effective 
parameters on the compressive strength of 3D printed 
materials are estimated by the neural network through 
utilization of the findings obtained in prior experiments. 
Consequently, the network possesses the capability to predict 
the anticipated output with a certain degree of error, provided 
that its input parameters are available [24]. The development 
of accurate and dependable models for predicting the 

compressive strength of 3D printing materials can result in 
significant time and cost savings. Hence, the precise and 
preliminary estimation of the durability of the 3D printed 
strength materials holds great significance within construction 
materials. 

 Many investigations have been undertaken utilizing 
artificial intelligence (AI) to explore the effect of SCM on the 
mechanical characteristics of conventional concrete. 
However, a thorough investigation is required to assess the 
influence of SCM features on the mechanical properties of 
3D-printed building materials. Although it has been 
established that the characteristics of SCM have an impact on 
various attributes of 3D printed materials, little study has been 
conducted to determine the amount to which each character is 
significant and its relative importance.  

The objective of this investigation is to ascertain the 
compressive strength of cementitious materials that have been 
3D printed and incorporate FA. This was achieved through the 
utilization of an ANN that employs a backpropagation 
algorithm. Furthermore, the study considers the various 
physical and chemical attributes that impact compressive 
strength. The limitations encountered during the experimental 
testing phase were successfully addressed by incorporating a 
multitude of datasets that possess diverse properties as input 
for the ANN. Consequently, this study furnishes 
methodologies for effectively implementing neural networks 
in the field of engineering. In addition, a soft computing 
technique is employed to extrapolate the findings garnered 
from the collected data to novel and unfamiliar scenarios. 

II. METHODOLOGY  

A. Development of the artificial neural network 
The ANN is made up of interconnected processing pieces 

called neurons or nodes that are intended to solve certain 
challenges. The ANN training procedure is separated into two 
stages: learning and testing. During the learning phase, the 
network's real information is entered, allowing the networks 
to gain the capacity to calculate the intended results through 
iterative learning. In this work, the ANN models and 
compressive strength of 3D-printed alkali-activated 
geopolymers were predicted using MATLAB software 
version 9.14.0 (R2023a). The sample's training component is 
based on the feed-forward backpropagation learning 
technique to find the top model capable of producing a reliable 
forecast. 

B. Dataset 
To initiate the construction of an ANN, the first step entails 

formulating the various parameters involved in the 3D 
printing of alkali-activated geopolymers containing FA. To 
collect these parameters, a comprehensive and systematic 
examination of existing literature was conducted. This 
involved putting a specific sequence of keywords into a 
research engine, which yielded a range of different papers. In 
this case, the research utilized the Scopus database with 
“TITLE-ABS-KEY ((mix OR details) AND (3d) AND 
(print*) AND (Fly ash OR waste-based OR recycled 
materials).) AND PUBYEAR > 2017 AND PUBYEAR < 
2024”, from which a total of forty papers were gathered. 

The primary objective of developing this database was to 
accumulate experimental data that could be utilized to train 
the ANN and generate predictions. Consequently, certain 
papers were excluded from the collection due to their lack of 
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experimental data or insufficient information. For instance, 
papers that omitted crucial details, such as the water-binder 
ratio, which is undeniably one of the most critical parameters 
in any mixture design, were disregarded. Similarly, papers that 
did not provide pertinent information in this regard were also 
omitted, to increase the dataset some results from related 
papers have been added. This results in the creation of a 
database of publications (47 in all) from which the parameters 
are calculated. 

Utilizing a back propagation neural network approach, 
models were constructed using a total of 53 experimental 
datasets [25]–[41]. The compressive strength of 3D-printed 
concrete containing FA has been estimated using previously 
reported results. The dataset compiled for this purpose 
included information about the mix composition ratio of FA, 
slag, water, and aggregates. In addition, the inputs considered 
were the CaO, SiO2, and Al2O3 content, as FA exhibits varying 
chemical and physical characteristics depending on its type 
and source. The curing age of samples was also included in 
the dataset. The collection was built using data from research 
investigations that offered specific information regarding 
concrete mix proportions, FA chemical composition, and 3D 
printed structures compressive strength at 28-days. Table Ⅰ 
contains a summary of the input and output parameters.  

TABLE I.  INPUT AND OUTPUT PARAMETERS FOR THE ANN MODELS 

Input Parameters Output Parameter 

FA: b 

28 Days Compressive 
Strength 

S: b 

W: b 

A: b 

SiO2 

Al2O3 

CaO 

a. FA: fly ash; b: binder; S: slag; W: water; A: aggregate. 
 

The dataset was carefully curated to constitute a 
reasonably inclusive assemblage Including all of the critical 
factors that determine the behavior of FA in 3D printed 
concrete. Statistical parameters for the dataset are displayed in 
Table Ⅱ and have the potential to offer a broad overview of 
the mixture proportions employed. 

TABLE II.  STATISTICAL PARAMETERS FOR THE DATASET. 

Parameter Min Max mean SD 

FA: b 0.0 1.00 0.56 0.36 

S: b 0.0 1.00 0.11 0.20 

W: b 0.13 2.01 0.48 0.35 

A: b 0.3 4.00 1.20 0.56 

SiO2 15.00 65.6 50.59 8.18 

Al2O3 15.00 39.35 26.15 5.70 

CaO 1.21 25.97 6.68 5.66 

Compressive 
Strength 4.14 55.2 32.99 15.29 

C. Modeling the network 
The identification of the most suitable arrangement of the 

network, which can yield both a well-established and highly 
precise result, holds significant importance. Different 
structures with varying numbers of neurons in each layer were 
investigated. The network's mean square error (MSE) and R-
value were computed for every neuron quantity in the hidden 
layer. 

The current study thoroughly examined and utilized 
various training techniques, such as Levenberg Marquardt 
(LM), Bayesian Regularization (BR), and Scaled Conjugate 
Gradient (SCG), to enhance the architecture of the ANN. The 
LM algorithm is widely employed for optimizing the training 
process of ANNs. This algorithm integrates components of 
both the gradient descent and Gauss-Newton methods, 
dynamically adjusting the learning rate to achieve efficient 
convergence. BR incorporates Bayesian principles to 
regularize the network, preventing overfitting by assigning 
probability distributions to the model's parameters. This 
probabilistic approach establishes a framework to strike a 
balance between model complexity and data fitting. On the 
other hand, SCG is an iterative optimization algorithm that 
effectively minimizes the error function by adapting the step 
size based on the curvature of the error surface. SCG is 
particularly useful in training ANNs when the computation of 
the matrix is computationally expensive. Each of these 
algorithms provides a distinct approach to addressing the 
challenges encountered in the training of neural networks, 
allowing researchers and practitioners to select the most 
suitable option based on their specific requirements and data 
characteristics. For the ANN's hidden and output layers, a 
sigmoid transfer function was applied. 

III. RESULT AND DISCUSSION    

A. ANN Performance 
Different numbers of neurons (8, 9, 10, 11, and 12) were 

implemented in the concealed layer of the three examined 
training algorithms throughout the training procedure, while 
the number of neurons in the input layer stayed consistent at 
seven. In the testing stage, the suitable quantity of neurons in 
the concealed layer was ascertained based on the lowest MSE 
and highest efficacy; the neural models are presented in Table 
Ⅲ. 

TABLE III.  STATISTICAL VALUES OF ANN MODELS. 

Training, Testing and Validation Stage 
Algorithm MSE R(Train) R(All) 

LM (7-8-1) 0.0086 0.9489 0.95244 

LM (7-9-1) 0.0076 0.9545 0.94718 

LM (7-10-1) 0.0075 0.9507 0.93776 

LM (7-11-1)* 0.0073 0.9558 0.95673 

LM (7-12-1) 0.0087 0.9514 0.94085 

BR (7-8-1) 0.0089 0.9509 0.94386 

BR (7-9-1) 0.0085 0.9503 0.95156 

BR (7-10-1) 0.0092 0.9439 0.94917 

BR (7-11-1) 0.0084 0.9537 0.95288 

BR (7-12-1) 0.0083 0.9499 0.95010 

SCG (7-8-1) 0.0153 0.9110 0.90460 

SCG (7-9-1) 0.0097 0.9372 0.92125 
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SCG (7-10-1) 0.0117 0.9300 0.93796 

SCG (7-11-1) 0.0159 0.9112 0.91107 

SCG (7-12-1) 0.0155 0.9011 0.90163 

 
It is evident that the LM models consistently demonstrate 

lower MSE values, indicating a superior level of predictive 
accuracy when compared to both the BR and SCG models. 
These findings deserve special attention since they correspond 
with the discoveries outlined in the current body of research. 
It represents a reliable option for enhancing the performance 
of neural network models due to their favorable convergence 
properties, exceptional accuracy, and reduced temporal 
demands [42]. The LM (7-11-1) model stands out with the 
lowest MSE, highlighting its prowess as the top-performing 
model in minimizing predictive errors. Furthermore, the BR 
(7-11-1) model also showcases a low MSE, positioning it as 
one of the more proficient BR models. 

On the other hand, the SCG models generally exhibit 
higher MSE values, suggesting a less precise fit to the data in 
comparison to the LM and BR models. Although SCG (7-9-
1) records the lowest MSE among the SCG models, it still falls 
short of matching the performance of the best-performing LM 
and BR models. 

The predictive ability of compressive strength for 3D 
construction materials incorporating FA can be ascertained 
upon successful training of the network. Moreover, the 
intricate relationship among the input parameters can be 
elucidated by means of the network. Fig. 1 depicts an 
evaluation of the networks' effectiveness in calculating 
compressive strength. The best validation performance was 
obtained in the 12th epoch, with a value of 0.00890. 

 
Fig. 1. The performance of the optimal network. 

Fig. 2 depicts the estimation quality as a function of R for 
all data, demonstrating the relationship between the 
experimental result and the ANN model output. It clearly 
displays total dataset response with R confirming that the 
network computed the data accurately. 

 
Fig. 2. The regression of the optimal network. 

Fig. 3 depicts a comparison of the findings for the 
compressive strength of FA-based samples made by 3D 
printing with the projected outcomes derived from the ANN. 
It is evident that the networks were able to forecast the 
experimental results with a commendable level of precision, 
which is deemed appropriate for practical applications. 

 
Fig. 3. The comparison between predicted and experimental results. 

B. Sensitivity Analysis 
Garson's factor, also referred to as Garson's algorithm, is a 

methodology employed to evaluate the comparative 
significance of input factors or independent variables in a 
neural network model. This technique aids researchers and 
data scientists in comprehending which factors possess the 
most substantial impact on the predictions or outcomes of the 
model. The application of Garson's factor analysis is primarily 
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confined to neural networks that encompass at least a single 
hidden layer. It assesses the significance of each input factor 
by scrutinizing the connection weights within the network.  

The resultant Garson's factors offer valuable insights into 
the relative importance of each input factor in influencing the 
output of the neural network. Higher Garson's factors signify 
greater importance, whereas lower factors imply lesser 
influence. The results for the proposed model plotted in Fig. 
4. 

In this context, the labels and weights appear to represent 
the factors and their importance in the model. The weight of 
0.18 of S: b indicates that variations in slag content have a 
relatively high impact on the model's predictions. S: b content 
is a key factor affecting the model's outcome standing with 
FA: b, CaO and W: b with 0.17, 0.16 and 0.15 weights 
respectively.   

In summary, these findings indicate the relative relevance 
of various input parameters in the neural network model. The 
specific interpretation of A: b and Al2O3 may require 
additional context in influencing the model's predictions, as 
indicated by their lower weights. 

 

 
Fig. 4. Feature importance for the model parameters. 

IV. CONCLUSION  

Estimating the compressive strength of 3D printed 
materials including FA using an ANN model that considers 
both ease and precision will help to save time, energy, and 
money. To be used in the ANN model, a comprehensive 
collection of 53 independent experimental records of FA-
based alkali-activated 3D printed materials was compiled 
from the literature. The subsequent inferences were concluded 
subsequent to examining the suggested ANN model: 

• The networks show high precision in predicting with 
an MSE lower than 0.008 for the LM-trained algorithm 
with R around 0.95. 

• The results of feature importance show that S: b, CaO, 
FA: b and W: b are the most crucial variables for 
predicting the compressive strength of 3D printed 
materials containing alkali-activated FA.   

However, the data in this study were obtained from 
preexisting literature. The experimental conditions varied 
among the articles, and the dataset was restricted. In order to 
obtain more dependable models, controlled experimental 
trials need to be carried out, and data must be collected from 
a singular source in accordance with the prevailing 
environmental conditions. Also, developing empirical 
equations to predict is of interest. 
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