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Abstract- The study utilizes to analyze the conditional correlations and
volatility persistence of S&P Global Clean Energy Index, 
Natural Gas, and clean cryptocurrencies (Cardano and Solana). 
It employs a DCC GARCH model (Dynamic Conditional 
Correlation model) this examines the existing time-varying 
correlations among various assets. Results demonstrate that 
Clean Energy Index stabilizes rapidly, but clean 
cryptocurrencies and natural gas display significant and 
persistent volatility. Solana has significant connections with 
Natural Gas and Clean Energy, illustrating interrelated market 
dynamics. The research provides valuable insight for decision-
makers, financiers, and investors into how digital, clean, and 
dirty energy assets interact. 
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I. INTRODUCTION

The worldwide energy market has been greatly affected by 
the conflict between Russia and Ukraine, which has increased 
volatility and changed the relationship between the 
established and new energy sectors. The conflict has brought 
energy security to the forefront of political and economic 
agendas in Europe, since the continent is highly dependent on 
Russian gas and oil.[1] The need of transitioning to 
renewable energy sources has been brought to light by this 
situation. This will help alleviate environmental concerns and 
lessen the geopolitical threats associated with our reliance on 
fossil fuels.[2]The conflict has also shed light on the 
complicated web of interconnections between new clean 
energy markets, more established dirty energy sectors, and 
newly developed financial products like cryptocurrency-
based energy-related products.[3]  
Several considerations are made in this study to go into these 
unexpected relationships: The S&P Global Clean Energy 
Index tracks the success of major clean energy companies; in 
contrast, natural gas is a dirty energy source that is both 
necessary and detrimental to the environment; the 
geopolitical tensions surrounding this conflict have a 
significant impact on this source [4]. We incorporate clean 

cryptocurrencies like as Cardano and Solana to assess the 
connection between these established and developing 
markets and digital assets linked to sustainable 
technology.[5] 
These developments have challenged the notion that clean 
energy markets operate independently from, rather than in 
conjunction with, traditional energy markets, particularly in 
geopolitical instability. [6] [7] The conflict between Russia 
and Ukraine has shown a possible correlation between these 
markets, implying that even environmentally friendly energy 
sectors are vulnerable to shocks caused by conventional 
energy supplies, such as natural gas. [8]  Investors and 
lawmakers must take the lead in comprehending the interplay 
between the markets because of the importance of these 
markets' interdependence during crises.[9] 
Cardano and Solana are two examples of clean 
cryptocurrencies that have emerged recently, adding another 
level of complexity to the international energy sector. [10] 
This new investment opportunity is based on digital assets 
that are connected to blockchain technology that are energy 
efficient. Simultaneously, they have raised the level of 
uncertainty and volatility in the market.[11] The role played 
by these cryptocurrencies in the energy market, especially 
during geopolitical conflicts such as the Russia-Ukraine War, 
is hardly explored.[12]Since the S&P Global Clean Energy 
Index is already struggling, investors should be aware of how 
these two cryptocurrencies impact the interaction between 
clean energy and dirty energy sectors, including the natural 
gas market, which is experiencing more and more dynamic 
opportunities.[13] 
In this empirical study, the impact of the conflict between 
Russia and Ukraine on clean energy markets (S&P Global 
Clean Energy Index), dirty energy markets (natural gas), and 
clean cryptocurrencies (Cardano and Solana) is to be 
identified.[14] This research, therefore, looks to investigate 
the dynamic connectedness between these markets before, 
during, and after the onset of conflict to find out how 
geopolitical tensions influence these interrelated energy 
sectors.[15] This analysis is essential as the war has caused 
considerable disruptions to global energy supply chains, 
which led to price shocks and increasing market uncertainty. 
[16]
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The findings from this study will introduce new perspectives 
to investors, policymakers, and market participants who must 
assume risks and capture opportunities under events of 
geopolitical instability.[17] The findings from this study will 
introduce new perspectives to investors, policymakers, and 
market participants who must assume risks and capture 
opportunities under events of geopolitical instability. 
[18]Stakeholders will need to know how the clean energy 
markets interact with natural gas and other dirty energy 
sources and clean energy-related cryptocurrencies when 
making decisions about portfolio diversification, risk 
management, and policy creation. [19] As the energy world 
continues to change because of the conflict between Russia 
and Ukraine, this should improve stakeholders' understanding 
of the energy market's complex interdependencies and guide 
their navigation of the challenges and opportunities 
ahead.[20]   
The structure of this paper is outlined as follows: Section 2 
presents a tabular assessment of the literature, while Section 
3 outlines the data, methodology, and tools employed. 
Section 4 presents the outcomes derived from the utilized 
models. Section 5 presents the conclusion and its associated 
consequences.. 
 

II. LITERATURE REVIEW 

Clean cryptocurrency, clean energy, and dirty energy have 
recently gained popularity, substance, and importance. much 
research has recently been done on these topics. Economic 
factors, markets, asset classes, and macroeconomic variables 
have all been the subject of much research over the years, 
with policy implications that assist various stakeholders in 
managing risk and diversifying their investment portfolios. 
Table 1 summarizes the literature on the dynamic 
relationships between clean energy, dirty energy, and clean 
cryptocurrency. much research has investigated the links 
between various asset groups, yielding valuable insights but 
leaving significant gaps. 
For instance, [21] employed wavelet coherence to show the 
complex, inconsistent linkages between energy 
cryptocurrency and energy markets. While insightful, this 
approach provides a static perspective, ignoring the time-
varying dynamics required to comprehend dynamic market 
situations. Similarly, [22] investigated risk spillovers 
between Islamic stock markets and renewable energy using 
VAR-ADCC models, although their emphasis needed to be 
bigger, limiting the study's overall usefulness. Studies such 
as [23] and [24] investigated volatility spillovers using 
advanced models such as GJR-GARCH and DCC-GARCH. 
However, they should have included the significance of 
geopolitical events in driving these dynamics. Furthermore, 
research on clean and dirty energy ([25], [26]) frequently uses 
static models that fail to reflect how linkages evolve, 
particularly during market disruptions. 
Few studies have included clean cryptocurrencies such as 
Cardano and Solana, with the most of research focusing on 
Bitcoin or Ethereum ([21], [27], [28]). This creates a 
significant vacuum in understanding the function of digital 
assets in energy markets. Furthermore, while some research 
([27], [28]) emphasizes diversification potential, it overlooks 
short-term volatility dynamics and the impact of geopolitical 
tensions, such as the Russia-Ukraine war. 

The review of existing literature identifies three significant 
gaps, which this study seeks to address. First, there needs to 
be more focus on clean cryptocurrencies, leaving a significant 
gap in understanding the function of digital assets in the 
broader energy markets. Secondly, most previous research 
still needs to incorporate geopolitical circumstances, 
reducing the significance of their findings during times of 
global conflict. Finally, an excessive reliance on static 
approaches fails to capture the dynamic, time-varying 
relationship required to comprehend the increasing 
interconnections of current asset classes. 
This study employs the DCC-GARCH model, a robust 
framework for analyzing dynamic conditional correlations 
and volatility persistence, to address these shortcomings. 
Using data from February 2022 to July 2024, marked by the 
Russia-Ukraine war, this study contextualizes its analysis 
within a real-world geopolitical crisis, offering more 
significant insights into how such tensions impact market 
behaviours. This study enhances understanding of asset 
relationships by integrating short-term and long-term 
perspectives, thereby addressing methodological limitations 
in the current literature.  
 

III. DATA AND ECONOMETRIC MODELS 

A. Data Description  
The dynamic connections between Clean Energy, Dirty 
Energy, and Clean Cryptocurrency are examined in this 
paper. Table 2 provides a thorough explanation of the 
variables. The analysis considers the daily prices of the Clean 
Energy Index, Cardona, Solano, and Natural Gas. The daily 
data from 22 February 2022 to 10 July 2024 is collected. 
These asset classes are chosen as Natural Gas is one of those 
variables affected the most by the Russia-Ukraine War. 
Solana and Cardona, called Clean Cryptocurrency, this asset 
class can be a diversifying tool for the dirty cryptocurrency, 
Bitcoin. The third index is the Clean Energy index; only the 
most persuasive index, the S&P 500 Clean Energy index, is 
selected. The selected time period was preferred over the 
others as it thoroughly analyses the effect of the war on the 
chosen assets. Significant fluctuations in asset classes can be 
seen during this period. Daily data of all the asset classes is 
taken as the weekly or the monthly data could have overstated 
or underestimated the effect of volatility in the market. Time-
frequency connectivity and volatility spillover effects have 
been examined using the DCC GARCH model. 

B. Methodology 
This section delineates the quantitative approaches employed 
in the study. The DCC GARCH model is utilized to analyze 
the conditional correlations and volatility spillovers among 
the indices. The specifications of the employed model are 
shown below: 

1)  “Dynamic Conditional Correlation-Generalized 
Autoregressive Conditional Heteroskedasticity Model” 
(DCC-GARCH Model) 
Understanding relationships among risk, volatility, and 
investment portfolio returns is crucial for identifying optimal 
financial strategies, specifically, investors are protected 
against risk. Consequently, when studying the univariate 
volatility models, it must become more attractive, but 
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additional information is required to evaluate time-varying 
asset correlations. To fill the gap ascertained in univariate 
volatility model, multivariate GARCH models were 
developed, which are essential for thorough financial analysis 
[23]. The model (CCC GARCH Model) used in the paper was 
first developed by Bollerslev in year 1990 and further revised 
by Engle in 2002, DCC GARCH model [24]. The model is 
considered to be significant as it calculates the dynamic 
conditional correlation coefficients between two variables. 
The procedure to estimate the values is divided into two 
stages [25], [26]. First, univariate GARCH models are used 
to forecast each element's variability. The second phase 
involves using the data obtained in the previous stage to 
determine the conditional correlation parameters of DCC 
[29]. Figure 1 is a framework diagram for each proposed 
algorithm to indicate how these employed models work to 
receive the experimental results.  
 
Eagle's DCC model has the following structure: 

!" =$"%"$" 

Where $"  = diag. (ℎ' '" 
' ()

, …..., ℎ* *"
' ()

), each ℎ++" is a separate 
univariate GARCH model, and  

%" = diag. (,'' "
' ()

,….., ,* *"
' ()

) Qt diag. (,* *"
' ()

) 
The matrix -"= (,+.") is the N×N positive symmetric matrix 

has been updated as follows:  
-"= (1- α- β) -/+ α0"1'0 ́"1'+β-"1' 

Where, 0"= 3+" / √ℎ+" 
 
 
 
 

Variables Cardano Solana 
Natural 
Gas 

Clean 
Energy 

Indices ADA SOL DJCING 
SPGTCLE
E 

Source ADA is a 
green 
cryptocurren
cy, Cardano's 
proof of 
stake (PoS) 
consensus 
system, 
which uses 
less energy, 
reducing its 
environmenta
l impact. 

SOL is a 
green 
cryptocurren
cy due to 
Solana's 
energy-
efficient 
Proof of 
History 
(PoH) and 
Proof of 
Stake (PoS) 
mechanisms. 

The 
NYMEX 
natural 
gas 
contracts 
serve as 
the basis 
for 
futures 
contracts 
used by 
the Dow 
Jones 
Commodi
ty Index 
Natural 
Gas to 
measure 
the 
natural 
gas 
market. 

This 
index, 
which is a 
componen
t of the 
Dow 
Jones and 
S&P 500 
indexes, 
evaluates 
the 
performan
ce of 
global 
clean 
energy 
firms. 

Data Source: investing.com 
 

 
 

IV. EMPIRICAL RESULTS AND DISCUSSIONS 

Table 3 is a tabular representation of the descriptive statistics 
of the variables chosen for analysis. The assets are listed 
alongside their corresponding tickers. The minimum value of 
all the variables with a significant maximum value has been 
discussed in the table; SOL has the lowest minimum return, 
while clean energy SPGTCLEE has the highest minimum 
return. Comparing the minimum and the maximum return, 
SOL indicates the highest volatility, whereas SPGTCLEE 
indicates the lowest volatility. The table compares the mean 
returns of variables, which reflects the average return over the 
period. SOL has a slightly positive mean return, which 
indicates a small average growth over the period. 
In contrast, DJCING has the lowest mean return with a slight 
average decline. The standard deviation measures the 
dispersion and volatility of returns from the mean; a larger 
number indicates more variability. The least volatile with the 
lowest standard deviation is SPGTCLEE, whereas SOL has 
the most significant standard deviation. Furthermore, 
skewness is considered to measure the asymmetry in the 
distribution of the returns. SOL shows strongly negative 
skewness, reflecting a more extreme negative return, whereas 
ADA and SPGTCLEE have positive skewness, indicating 
more extreme positive returns. Kurtosis is a measure of the 
"tailedness" of the distribution. SOL has the highest kurtosis, 
showing frequent extreme returns, while DJCING has the 
lowest kurtosis. This indicates that the distribution is closer 
to the normal distribution with a few extreme values. 
According to the Jarque Bera Test findings, which look for 
normality, none of the variables have a normal distribution. 
The ADF Test indicates that all variables are stationary. 
Figure 2 is a time series plot of the constituent market 
showing the fluctuations. Figure 3 graphically shows the log 
return of the constituent markets. 
 

         

        
 

TABLE 2: OVERVIEW OF THE INDICES 

Fig. 2. Time series plot of closing prices of constituent markets  
 

Fig 1. Research Framework 
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                                            Fig. 1. Time series plot of the closconstituent  

 

         
 
 
 

 
 
 
 
 
 
 

 

A. Results of the DCC GARCH Model 
This study applied the model developed by [36]. It 
investigates the dynamic relationship between clean energy, 
dirty energy, and clean cryptocurrency.  
 
                                                                                        
 

Indices ADA SOL DJCING SPGTCLEE 

Variables Cardona Solana Natural 
Gas 

Clean 
Energy 

Min -0.26263 -0.55085 -0.18267 -0.10177 
Max 0.3176 0.30098 0.13349 0.07441 
Mean -0.00083 0.00033 -0.00177 -0.00048 

Std Dev 0.05008 0.06912 0.04479 0.0182 

Skewness 0.22189 -0.91395 -0.32599 0.17921 

Kurtosis 6.32441 9.64895 0.81198 3.60895 
Jarque 
Bera Test 

0 0 0 0 

Adf test (p-
value) 

0.01** 0.01** 0.01** 0.01** 

It has been chosen due to its advantages. For instance, the 
model investigates dynamic investor behaviour regarding 

Authors Assets Classes Data Period Methods Findings 

[21] Energy Cryptocurrencies, Clean 
Energy and   
Dirty Energy  

2 January 2018 
to 25 January 
2023 

Bivariate wavelet coherence 
and Partial Wavelet Coherence 

The paper highlights the heterogeneous 
relationships of energy cryptocurrencies with 
energy assets significantly influenced by 
uncertainty. 

[22] Islamic Stock Markets and  
Renewable Energy 

1 January 2015 
to 29 December 
2022 

VAR-ADCC models and 
conditional value at risk 
(CoVaR) techniques 

Risk spillover between renewable energy and 
Islamic stock markets is asymmetric, with 
Canadian markets showing the most 
sensitivity. 

[30] Dirty Energy and Clean Energy 18 May 2011 to 
12 August 2020 

Glosten-Jagannathan-Runkle 
(GJR) model, DY and BK 

Volatility spillover between clean and dirty 
energy markets is asymmetric, with bad news 
having a more significant impact than good 
news. 

[31] Green Bonds, 
Renewable Energy and 
Cryptocurrency 

1 October 2015 
to 24 February 
2022 

 DCC,DY, and BK models Long-term volatility spillover from green 
bonds to renewable energy and 
cryptocurrencies provide short-term 
diversification advantages. 

[32] Clean energy stocks and  
Dirty energies 

7 March 2006 to 
16 June 2021 

Wavelet coherence analysis Clean energy markets have shown a weak 
correlation from dirty energy markets, 
especially during COVID-19, which led to 
enhanced diversification opportunities. 

[33] Dirty Energy Stock Indexes and 
Clean Energy Stock Indexes 
 

 3 May 2018 to 2 
May 2023 

Descriptive statistics, Unit root 
tests, Residue stability tests, and 
a Granger VAR causality model 

The indices for dirty and clean energy are 
interrelated, but they do not show any  
hedging or safe-haven properties, particularly 
in times of economic instability. 

[27] Dirty Energy Stock Indexes and 
Clean Energy Stock Indexes 
 

16 May 2018 to 
15 May 2023 

Gregory and Hansen's 
cointegration methodology and 
Forbes and Rigobon's t-test for 
heteroscedasticity of two 
samples 

Clean energy stocks show potential as safe 
havens for "dirty" cryptocurrencies, but 
relationships vary depending on the specific 
assets and market conditions. 

[28] Green Equity Index, Traditional 
Assets, and Non-Traditional 
Assets 

25 October 2016 
to 20 April 2021 

Network and Wavelet analyses Bitcoin is primarily isolated from green 
equity indices and other assets, making it a 
robust diversification tool for investors, 
particularly those seeking to offset the 
environmental impact of Bitcoin investments. 

[34] Green Financial Assets and 
Cryptocurrency 
Uncertainty/Attention Indices. 
 

3 January 2014 
to 31 December 
2021 

Bivariate wavelet coherence 
approach 

Cryptocurrency uncertainty/attention indices 
have a predominantly negative relationship 
with green financial asset returns over time. 

[35] Case study of DONG Energy, a 
Danish company that successfully 
transitioned to become Ørsted, a 
green energy company. 

2010 to 2021 Case Study While challenging, oil and gas companies can 
transition to clean energy by leveraging 
internal strengths and responding to external 
pressures. 
 
 

TABLE 1: REVIEW OF LITERATURE 

TABLE 3: DESCRIPTIVE STATISTICS OF THE CHOSEN 
VARIABLE 

Fig. 3. Graphical depiction of log returns of markets 
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current events and news by identifying potential variations in 
the asset's conditional correlations.  
Table 4 exhibits the model’s outcomes. The spillover effects 
between various asset class pairs are shown in the table. The 
terms “mu” is the general mean and “omega” is the constants. 
ARCH is represented by “alpha1” and the GARCH by 
“beta1”. Alpha determines whether or not there is short-term 
variance based on preceding disturbances. In contrast, “beta” 
evaluates the persistence of volatility and it ascertains the 
variations on long-term conditional correlation of the 
market.[26] [37] The “alpha1” and “beta1” readings to show 
volatility persistence should positive and significant at a level 
of 5%. Both the parameters “alpha 1” and “beta 1” in both 
series should be less than 1, are used to check for volatility 
and determine whether or not time decay happened during 
this time period. 
Cardano to Solana's total of “alpha” is 0.869986 and “beta” 
is 0.632210. This shows that in contrast to “rCardano”, 
“rSolana” has a low volatility persistence. Additionally, there 
is no short-term information spillover, as indicated by the 
positive but insignificant coefficient of “dcca1” of 0.087472. 
On the other hand, the long-term significant and positive 
coefficient of “dccb1” is 0.000000, indicating information 
spillover. From “rCardano” to “rNaturalGas,” the total of 
“alpha” is 0.869986 and total of “beta” is 0.947138. 
“rCardano” has less volatility persistence when compared 
“rNaturalGas”. 
The positive but insignificant coefficient of “dcca1”, which 
is 0.086794, indicates that short-term information spillover is 
not evident. The coefficient of “dccb1” is 0.000000, which is 
significant and positive, signifying long-term information 
spillover. Alpha and beta total 0.869986 and 0.467624 in 
“rCardano” and “rCleanEnergy”, respectively. It 
demonstrates that, unlike “rCardano”, “rCleanEnergy” has 
minimal volatility persistence. Additionally, there is no short-
term information spillover, as evidenced by the positive and 
minimal coefficient of “dcca1”, which is 0.018515. 
Nevertheless, the coefficient of “dccb1” is 0.000000, 
indicating a significant and favorable long-term information 
spillover. The total of “alpha” is 0.632210 and total of “beta” 
is 0.947138, for “rSolana” and “rNaturalGas”. It indicates 
that “rSolana” has lower volatility persistence than 
“rNaturalGas”. 
The coefficients for “dcca1” and dcca2, indicating long-term 
information spillover, are 0.999881 and 0.000000, 
respectively. This reflects no information spillover in the 
short term. The values of alpha and beta for “rSolana” and 
“rCleanEnergy” are 0.467624 and 0.632210, respectively. 
The findings indicate that “rCleanEnergy” shows reduced 
volatility persistence in comparison to “rSolana”. In the 
context of information spillover, the coefficient of “dcca1” is 
positive; however, it is insignificant. 
The coefficient of “dccb1” is positive and statistically 
significant, suggesting that information spillover manifests in 
the long term rather than the short term. The values of alpha 
and beta for “rNaturalGas” and “rCleanEnergy” are 0.947138 
and 0.467624, respectively. It demonstrates 
“rCleanEnergy”'s sustained low volatility in comparison to 
“rNaturalGas”. Furthermore, there is no short-term 
information spillover, since the “dcca1” coefficient is 
positive yet insignificant. In contrast, the “dccb1” coefficient 

is significant, indicating information spillover over the long 
term.  
 

V. CONCLUSION AND FUTURE IMPLICATIONS 

The dynamic relationships and volatility persistence between 
clean cryptocurrencies, Cardano and Solana, the S&P Global 
Clean Energy Index, and a dirty energy source, natural gas, 
are examined in this paper. The research reveals a few 
important observations regarding the relationship between 
these assets. In contrast to the clean energy index, which has 
a reduced volatility persistence and a different response to 
shocks, clean cryptocurrency and dirty energy show that 
shocks to their returns have a lasting effect on the market. To 
investigate the dynamic conditional correlations between the 
assets, DCC GARCH is utilized; the study reveals that the 
long-term correlation among the assets is significant, whereas 
the short-term correlation shows varied results for different 
pairs of assets. Some pairs have shown considerable short-
term correlation. It was observed that clean cryptocurrencies, 
particularly Solana, have shown intense volatility and have 
significant correlations with both Clean Energy and Natural 
Gas. Future research should examine how ESG 
measurements affect the volatility and correlations between 
clean cryptocurrencies, energy indices, and conventional 
energy sources, given the increasing significance of 
sustainability-backed ESG (Environmental, Social, and 
Governance) considerations. Moreover, future studies might 
improve the modelling and prediction of volatility and 
correlations among various assets by integrating AI and 
machine learning approaches. Longitudinal studies that 
monitor the development of these markets over time would 
yield important insights into how global economic trends, 
regulatory changes, and technological breakthroughs affect 
the relationships between clean energy, cryptocurrencies, and 
traditional energy assets. 
 
 
  

Estimate Std. 
Error 

t value Pr(>|t|) 

DCC from Cardano to Solana 
  

[“rCardano”].”mu”      -0.00006 0.00201 -0.03349 0.97328 

[“rCardano”]."omega”    0.00012 0.00011 1.08368 0.27850 

[“rCardano”].”alpha1”   0.08103 0.03886 2.08497 0.03707 

[“rCardano”].”beta1”    0.86998 0.07296 11.9242
2 

0.00000 

[“rSolana”].”mu”        0.00118 0.00246 0.47906 0.63189 

[“rSolana”].”omega”     0.00066 0.00026 2.46470 0.01371 

[“rSolana”].”alpha1”    0.24605 0.10415 2.36229 0.01816 

[“rSolana”].”beta1”     0.63221 0.10397 6.08035 0.00000 

[Joint]”dcca1”        0.04881 0.02856 1.70888 0.08747 

[Joint]”dccb1”        0.79051 0.07944 9.95106 0.00000 

DCC from Cardano to Natural Gas 
  

[“rCardano”].”mu”         -0.00006 0.00200 -0.03372 0.97309 

[“rCardano”].”omega”      0.00012 0.00010 1.11559 0.26459 

[“rCardano”].”alpha1”     0.08103 0.03852 2.10313 0.03545 

[“rCardano”].”beta1”       0.86998 0.07182 12.11194 0.00000 

TABLE 4 – RESULTS OF DCC GARCH Model 
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[“rNaturalGas”].”mu”      -0.00116 0.00192 -0.60626 0.54433 

[“rNaturalGas”].”omeg
a”    

0.00002 0.00001 1.26130 0.20720 

[“rNaturalGas”].”alpha
1”   

0.04283 0.01329 3.22178 0.00127 

[“rNaturalGas”].”beta1
”    

0.94713 0.01466 64.5682
4 

0.00000 

[Joint]”dcca1”           0.01171 0.00683 1.71255 0.08679 

[Joint]”dccb1”           0.98262 0.00553 177.506
69 

0.00000 

DCC from Cardano to Clean Energy 
  

[“rCardano”].”mu”          -0.00006 0.00200 -0.03377 0.97305 

[“rCardano”].”omega”       0.00012 0.00011 1.09471 0.27364 

[“rCardano”].”alpha1”      0.081032 0.03868 2.09484 0.03618 

[“rCardano”].”beta1”       0.86998 0.07314 11.8936
7 

0.00000 

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.53748 0.59093 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.15711 0.24722 

[“rCleanEnergy”].”alph
a1”   

0.20304 0.10894 1.86370 0.06236 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35798 1.30627 0.19145 

[Joint]”dcca1”            0.06089 0.02585 2.35514 0.01851 

[Joint]”dccb1”            0.81492 0.08313 9.80275 0.00000 

DCC from Solana to Natural Gas 
  

[“rSolana”].”mu”           0.00118 0.00248 0.47401 0.63549 

[“rSolana”].”omega”        0.00066 0.00026 2.47254 0.01341 

[“rSolana”].”alpha1”       0.24605 0.10418 2.36176 0.01818 

[“rSolana”].”beta1”        0.63221 0.10395 6.08156 0.00000 

[“rNaturalGas”].”mu”      -0.00116 0.00191 -0.60675 0.54401 

[“rNaturalGas”].”omeg
a”    

0.00002 0.00001 1.26320 0.20651 

[“rNaturalGas”].”alpha
1”   

0.04283 0.01327 3.22619 0.00125 

[“rNaturalGas”].”beta1
”    

0.94713 0.01467 64.5534
5 

0.00000 

[Joint]”dcca1”           0.00000 0.00002 0.00014 0.99988 

Joint]”dccb1”           0.92724 0.16441 5.63976 0.00000 

DCC from Solana to Clean Energy 
  

[“rSolana”].”mu”            0.00118 0.00247 0.47715 0.63325 

[“rSolana”].”omega”        0.00066 0.00026 2.46347 0.01376 

[“rSolana”].”alpha1”        0.24605 0.10435 2.35787 0.01838 

[“rSolana”].”beta1”         0.63221 0.10451 6.04924 0.00000 

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.53796 0.59060 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.16698 0.24321 

[“rCleanEnergy”].”alph
a1”   

0.20304 0.10789 1.88192 0.05984 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35503 1.31710 0.18780 

[Joint]”dcca1”            0.08260 0.02963 2.78722 0.00531 

[Joint]”dccb1”            0.67703 0.15263 4.43576 0.00000 

DCC from Natural Gas to Clean Energy 
  

[“rNaturalGas”].”mu”      -0.00116 0.00191 -0.60675 0.54401 

[“rNaturalGas”].”omeg
a”     

0.00002 0.00001 1.26321 0.20651 

[“rNaturalGas”].”alpha
1”    

0.04283 0.01327 3.22624 0.00125 

[“rNaturalGas”].”beta1
”     

0.94713 0.01467 64.5537
5 

0.00000 

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.54048 0.58886 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.16929 0.24228 

[“rCleanEnergy”].”alph
a1”   

0.20304 0.10780 1.88347 0.05963 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35441 1.31942 0.18702 

[Joint]”dcca1”            0.00000 0.00001 0.00042 0.99966 

[Joint]”dccb1”            0.90214 0.10412 8.66383 0.0000 

DCC from Clean Energy to Natural Gas 
  

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.54048 0.58886 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.16923 0.24231 

[“rCleanEnergy”].”alph
a1”   

0.20304 0.10780 1.88341 0.05964 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35444 1.31933 0.18705 

[“rNaturalGas”].”mu”      -0.00116 0.00191 -0.60675 0.54401 

[“rNaturalGas”].”omeg
a”     

0.00002 0.00001 1.26320 0.20651 

[“rNaturalGas”].”alpha
1”    

0.04283 0.01327 3.22630 0.00125 

[“rNaturalGas”].”beta1
”     

0.94713 0.01467 64.5548
8 

0.00000 

[Joint]”dcca1”            0.00000 0.00002 0.00018 0.99985 

[Joint]”dccb1”            0.90214 0.10402 8.67270 0.00000 

DCC from Solana to Cardano 
  

[“rSolana”].”mu”        0.00118 0.00246 0.47906 0.63189 

[“rSolana”].”omega”     0.00066 0.00026 2.46470 0.01371 

[“rSolana”].”alpha1”    0.24605 0.10415 2.36230 0.01816 

[“rSolana”].”beta1”     0.63221 0.10397 6.08036 0.00000 

[rCardona].”mu”      -0.00006 0.00201 -0.03349 0.97328 

[rCardona].”omega”    0.00012 0.00011 1.08372 0.27848 

[rCardona].”alpha1”   0.08103 0.03886 2.08498 0.03707 

[rCardona].”beta1”    0.86998 0.07295 11.9246
7 

0.00000 

[Joint]”dcca1”        0.04881 0.02856 1.70879 0.08748 

[Joint]”dccb1”        0.79051 0.07941 9.95390 0.00000 

DCC from Natural Gas to Cardano 
  

[“rNaturalGas”].”mu” -0.00116 0.00192 -0.60626 0.54433 

[“rNaturalGas”].”omeg
a”    

0.00002 0.00001 1.26130 0.20720 

[“rNaturalGas”].”alpha
1”   

0.04283 0.01329 3.22178 0.00127 

[“rNaturalGas”].”beta1
”    

0.94713 0.01466 64.5682
4 

0.00000 

[“rCardano”].”mu”         -0.00006 0.00200 -0.03372 0.97309 

[“rCardano”].”omega”      0.00012 0.00010 1.11559 0.26459 

[“rCardano”].”alpha1”     0.08103 0.03852 2.10312 0.03545 

[“rCardano”].”beta1”       0.86998 0.07182 12.11194 0.00000 

[Joint]”dcca1”           0.01171 0.00683 1.71255 0.08679 

[Joint]”dccb1”           0.98262 0.00553 177.503
7 

0.00000 

DCC from Clean Energy to Cardano 
  

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.53748 0.59093 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.15712 0.24722 
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[“rCleanEnergy”].”alph
a1”   

0.203045 0.10894 1.86371 0.06236 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35797 1.30629 0.19145 

[“rCardano”].”mu”          -0.00006 0.00200 -0.03377 0.97305 

[“rCardano”].”omega”       0.00012 0.00011 1.09469 0.27365 

[“rCardano”].”alpha1”      0.08103 0.03868 2.09484 0.03618 

[“rCardano”].”beta1”       0.86998 0.07314 11.8935
9 

0.00000 

[Joint]”dcca1”            0.06089 0.02585 2.35569 0.01848 

[Joint]”dccb1”            0.81492 0.08320 9.79460 0.00000 

DCC from Natural Gas to Solana 
  

[“rNaturalGas”].”mu”      -0.00116 0.00191 -0.60675 0.54401 

[“rNaturalGas”].”omeg
a”    

0.00002 0.00001 1.26320 0.20651 

[“rNaturalGas”].”alpha
1”   

0.04283 0.01327 3.22626 0.00125 

[“rNaturalGas”].”beta1
”    

0.94713 0.01467 64.5538
0 

0.00000 

[“rSolana”].”mu”           0.00118 0.00248 0.47401 0.63548 

[“rSolana”].”omega”        0.00066 0.00026 2.47254 0.01341 

[“rSolana”].”alpha1”       0.24605 0.10418 2.36176
0 

0.01818 

[“rSolana”].”beta1”        0.63221 0.10395 6.08143 0.00000 

[Joint]”dcca1”           0.00000 0.00000 0.00177 0.99858 

[Joint]”dccb1”           0.92724 0.16451 5.63626 0.00000 

DCC from Clean Energy to Solana 
  

[“rCleanEnergy”].”mu”     -0.00041 0.00077 -0.53796 0.59060 

[“rCleanEnergy”].”ome
ga”    

0.00010 0.00009 1.16699 0.24321 

[“rCleanEnergy”].”alph
a1”   

0.20304 0.10789 1.88193 0.05984 

[“rCleanEnergy”].”beta
1”    

0.46762 0.35503 1.31711 0.18780 

[“rSolana”].”mu”            0.00118 0.00247 0.47716 0.63324 

[“rSolana”].”omega”        0.00066 0.00026 2.46331 0.01376 

[“rSolana”].”alpha1”        0.24605 0.10435 2.35789
0 

0.01837 

[“rSolana”].”beta1”         0.63221 0.10451 6.04903
0 

0.00000 

[Joint]”dcca1”            0.08260 0.02962 2.78811
0 

0.00530 

[Joint]”dccb1”            0.67703 0.15294 4.42673
0 

0.00001
0 
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