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Kbsssudy utilizes to analyze the conditional correlations and
volatility persistence of S&P Global Clean Energy Index,
Natural Gas, and clean cryptocurrencies (Cardano and Solana).
It employs a DCC GARCH model (Dynamic Conditional
Correlation model) this examines the existing time-varying
correlations among various assets. Results demonstrate that
Clean Energy Index stabilizes rapidly, but clean
cryptocurrencies and natural gas display significant and
persistent volatility. Solana has significant connections with
Natural Gas and Clean Energy, illustrating interrelated market
dynamics. The research provides valuable insight for decision-
makers, financiers, and investors into how digital, clean, and
dirty energy assets interact.
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The worldwide energy market has been greatly affected by
the conflict between Russia and Ukraine, which has increased
volatility and changed the relationship between the
established and new energy sectors. The conflict has brought
energy security to the forefront of political and economic
agendas in Europe, since the continent is highly dependent on
Russian gas and oil.[l1] The need of transitioning to
renewable energy sources has been brought to light by this
situation. This will help alleviate environmental concerns and
lessen the geopolitical threats associated with our reliance on
fossil fuels.[2]The conflict has also shed light on the
complicated web of interconnections between new clean
energy markets, more established dirty energy sectors, and
newly developed financial products like cryptocurrency-
based energy-related products.[3]

Several considerations are made in this study to go into these
unexpected relationships: The S&P Global Clean Energy
Index tracks the success of major clean energy companies; in
contrast, natural gas is a dirty energy source that is both
necessary and detrimental to the environment; the
geopolitical tensions surrounding this conflict have a
significant impact on this source [4]. We incorporate clean
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cryptocurrencies like as Cardano and Solana to assess the
connection between these established and developing
markets and digital assets linked to sustainable
technology.[5]

These developments have challenged the notion that clean
energy markets operate independently from, rather than in
conjunction with, traditional energy markets, particularly in
geopolitical instability. [6] [7] The conflict between Russia
and Ukraine has shown a possible correlation between these
markets, implying that even environmentally friendly energy
sectors are vulnerable to shocks caused by conventional
energy supplies, such as natural gas. [8] Investors and
lawmakers must take the lead in comprehending the interplay
between the markets because of the importance of these
markets' interdependence during crises.[9]

Cardano and Solana are two examples of clean
cryptocurrencies that have emerged recently, adding another
level of complexity to the international energy sector. [10]
This new investment opportunity is based on digital assets
that are connected to blockchain technology that are energy
efficient. Simultaneously, they have raised the level of
uncertainty and volatility in the market.[11] The role played
by these cryptocurrencies in the energy market, especially
during geopolitical conflicts such as the Russia-Ukraine War,
is hardly explored.[12]Since the S&P Global Clean Energy
Index is already struggling, investors should be aware of how
these two cryptocurrencies impact the interaction between
clean energy and dirty energy sectors, including the natural
gas market, which is experiencing more and more dynamic
opportunities.[13]

In this empirical study, the impact of the conflict between
Russia and Ukraine on clean energy markets (S&P Global
Clean Energy Index), dirty energy markets (natural gas), and
clean cryptocurrencies (Cardano and Solana) is to be
identified.[14] This research, therefore, looks to investigate
the dynamic connectedness between these markets before,
during, and after the onset of conflict to find out how
geopolitical tensions influence these interrelated energy
sectors.[15] This analysis is essential as the war has caused
considerable disruptions to global energy supply chains,
which led to price shocks and increasing market uncertainty.
[16]




The findings from this study will introduce new perspectives
to investors, policymakers, and market participants who must
assume risks and capture opportunities under events of
geopolitical instability.[17] The findings from this study will
introduce new perspectives to investors, policymakers, and
market participants who must assume risks and capture
opportunities under events of geopolitical instability.
[18]Stakeholders will need to know how the clean energy
markets interact with natural gas and other dirty energy
sources and clean energy-related cryptocurrencies when
making decisions about portfolio diversification, risk
management, and policy creation. [19] As the energy world
continues to change because of the conflict between Russia
and Ukraine, this should improve stakeholders' understanding
of the energy market's complex interdependencies and guide
their navigation of the challenges and opportunities
ahead.[20]

The structure of this paper is outlined as follows: Section 2
presents a tabular assessment of the literature, while Section
3 outlines the data, methodology, and tools employed.
Section 4 presents the outcomes derived from the utilized
models. Section 5 presents the conclusion and its associated
consequences..
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Clean cryptocurrency, clean energy, and dirty energy have
recently gained popularity, substance, and importance. much
research has recently been done on these topics. Economic
factors, markets, asset classes, and macroeconomic variables
have all been the subject of much research over the years,
with policy implications that assist various stakeholders in
managing risk and diversifying their investment portfolios.
Table 1 summarizes the literature on the dynamic
relationships between clean energy, dirty energy, and clean
cryptocurrency. much research has investigated the links
between various asset groups, yielding valuable insights but
leaving significant gaps.

For instance, [21] employed wavelet coherence to show the
complex, inconsistent linkages between  energy
cryptocurrency and energy markets. While insightful, this
approach provides a static perspective, ignoring the time-
varying dynamics required to comprehend dynamic market
situations. Similarly, [22] investigated risk spillovers
between Islamic stock markets and renewable energy using
VAR-ADCC models, although their emphasis needed to be
bigger, limiting the study's overall usefulness. Studies such
as [23] and [24] investigated volatility spillovers using
advanced models such as GJR-GARCH and DCC-GARCH.
However, they should have included the significance of
geopolitical events in driving these dynamics. Furthermore,
research on clean and dirty energy ([25], [26]) frequently uses
static models that fail to reflect how linkages evolve,
particularly during market disruptions.

Few studies have included clean cryptocurrencies such as
Cardano and Solana, with the most of research focusing on
Bitcoin or Ethereum ([21], [27], [28]). This creates a
significant vacuum in understanding the function of digital
assets in energy markets. Furthermore, while some research
([27], [28]) emphasizes diversification potential, it overlooks
short-term volatility dynamics and the impact of geopolitical
tensions, such as the Russia-Ukraine war.
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The review of existing literature identifies three significant
gaps, which this study seeks to address. First, there needs to
be more focus on clean cryptocurrencies, leaving a significant
gap in understanding the function of digital assets in the
broader energy markets. Secondly, most previous research
still needs to incorporate geopolitical circumstances,
reducing the significance of their findings during times of
global conflict. Finally, an excessive reliance on static
approaches fails to capture the dynamic, time-varying
relationship required to comprehend the increasing
interconnections of current asset classes.

This study employs the DCC-GARCH model, a robust
framework for analyzing dynamic conditional correlations
and volatility persistence, to address these shortcomings.
Using data from February 2022 to July 2024, marked by the
Russia-Ukraine war, this study contextualizes its analysis
within a real-world geopolitical crisis, offering more
significant insights into how such tensions impact market
behaviours. This study enhances understanding of asset
relationships by integrating short-term and long-term
perspectives, thereby addressing methodological limitations
in the current literature.

III. DATA AND ECONOMETRIC MODELS

A. Data Description

The dynamic connections between Clean Energy, Dirty
Energy, and Clean Cryptocurrency are examined in this
paper. Table 2 provides a thorough explanation of the
variables. The analysis considers the daily prices of the Clean
Energy Index, Cardona, Solano, and Natural Gas. The daily
data from 22 February 2022 to 10 July 2024 is collected.
These asset classes are chosen as Natural Gas is one of those
variables affected the most by the Russia-Ukraine War.
Solana and Cardona, called Clean Cryptocurrency, this asset
class can be a diversifying tool for the dirty cryptocurrency,
Bitcoin. The third index is the Clean Energy index; only the
most persuasive index, the S&P 500 Clean Energy index, is
selected. The selected time period was preferred over the
others as it thoroughly analyses the effect of the war on the
chosen assets. Significant fluctuations in asset classes can be
seen during this period. Daily data of all the asset classes is
taken as the weekly or the monthly data could have overstated
or underestimated the effect of volatility in the market. Time-
frequency connectivity and volatility spillover effects have
been examined using the DCC GARCH model.

B. Methodology

This section delineates the quantitative approaches employed
in the study. The DCC GARCH model is utilized to analyze
the conditional correlations and volatility spillovers among
the indices. The specifications of the employed model are
shown below:

1)  “Dynamic  Conditional Correlation-Generalized
Autoregressive Conditional Heteroskedasticity Model”
(DCC-GARCH Model)

Understanding relationships among risk, volatility, and
investment portfolio returns is crucial for identifying optimal
financial strategies, specifically, investors are protected
against risk. Consequently, when studying the univariate
volatility models, it must become more attractive, but




additional information is required to evaluate time-varying
asset correlations. To fill the gap ascertained in univariate
volatility model, multivariate GARCH models were
developed, which are essential for thorough financial analysis
[23]. The model (CCC GARCH Model) used in the paper was
first developed by Bollerslev in year 1990 and further revised
by Engle in 2002, DCC GARCH model [24]. The model is
considered to be significant as it calculates the dynamic
conditional correlation coefficients between two variables.
The procedure to estimate the values is divided into two
stages [25], [26]. First, univariate GARCH models are used
to forecast each element's variability. The second phase
involves using the data obtained in the previous stage to
determine the conditional correlation parameters of DCC
[29]. Figure 1 is a framework diagram for each proposed
algorithm to indicate how these employed models work to
receive the experimental results.

Eagle's DCC model has the following structure:

Hy=D¢R:D;
1 1
Where D, = diag. (h1/12t s weeeens h’N/IZVt)’ each h;;; is a separate

univariate GARCH model, and

R — d 1/2 1/2 d 1/2
¢ 1ag. (q,1%--++ qy n¢) Qt diag. (qN Nt
The matrix Q;= (q;;;) is the NxN positive symmetric matrix
has been updated as follows:
Q= (1-0- B) QO+ a1 U’y 1 +PQr 4
Where, u,= &, / Vhy;
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Fig 1. Research Framework
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IV. EMPIRICAL RESULTS AND DISCUSSIONS

Table 3 is a tabular representation of the descriptive statistics
of the variables chosen for analysis. The assets are listed
alongside their corresponding tickers. The minimum value of
all the variables with a significant maximum value has been
discussed in the table; SOL has the lowest minimum return,
while clean energy SPGTCLEE has the highest minimum
return. Comparing the minimum and the maximum return,
SOL indicates the highest volatility, whereas SPGTCLEE
indicates the lowest volatility. The table compares the mean
returns of variables, which reflects the average return over the
period. SOL has a slightly positive mean return, which
indicates a small average growth over the period.

In contrast, DJCING has the lowest mean return with a slight
average decline. The standard deviation measures the
dispersion and volatility of returns from the mean; a larger
number indicates more variability. The least volatile with the
lowest standard deviation is SPGTCLEE, whereas SOL has
the most significant standard deviation. Furthermore,
skewness is considered to measure the asymmetry in the
distribution of the returns. SOL shows strongly negative
skewness, reflecting a more extreme negative return, whereas
ADA and SPGTCLEE have positive skewness, indicating
more extreme positive returns. Kurtosis is a measure of the
"tailedness" of the distribution. SOL has the highest kurtosis,
showing frequent extreme returns, while DJCING has the
lowest kurtosis. This indicates that the distribution is closer
to the normal distribution with a few extreme values.
According to the Jarque Bera Test findings, which look for
normality, none of the variables have a normal distribution.
The ADF Test indicates that all variables are stationary.
Figure 2 is a time series plot of the constituent market
showing the fluctuations. Figure 3 graphically shows the log
return of the constituent markets.
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Fig. 2. Time series plot of closing prices of constituent markets




TABLE 1: REVIEW OF LITERATURE

Authors Assets Classes Data Period Methods Findings

[21] Energy Cryptocurrencies, Clean | 2 January 2018 | Bivariate wavelet coherence | The paper highlights the heterogeneous
Energy and to 25 January | and Partial Wavelet Coherence relationships of energy cryptocurrencies with
Dirty Energy 2023 energy assets significantly influenced by

uncertainty.

[22] Islamic Stock Markets and | 1 January 2015 | VAR-ADCC  models  and | Risk spillover between renewable energy and
Renewable Energy to 29 December | conditional value at risk | Islamic stock markets is asymmetric, with

2022 (CoVaR) techniques Canadian markets showing the most
sensitivity.

[30] Dirty Energy and Clean Energy 18 May 2011 to | Glosten-Jagannathan-Runkle Volatility spillover between clean and dirty

12 August 2020 | (GJR) model, DY and BK energy markets is asymmetric, with bad news
having a more significant impact than good
news.

[31] Green Bonds, 1 October 2015 | DCC,DY, and BK models Long-term volatility spillover from green
Renewable Energy and to 24 February bonds to renewable energy and
Cryptocurrency 2022 cryptocurrencies provide short-term

diversification advantages.

[32] Clean energy stocks and 7 March 2006 to | Wavelet coherence analysis Clean energy markets have shown a weak
Dirty energies 16 June 2021 correlation from dirty energy markets,

especially during COVID-19, which led to
enhanced diversification opportunities.

[33] Dirty Energy Stock Indexes and | 3May2018to2 | Descriptive statistics, Unit root | The indices for dirty and clean energy are
Clean Energy Stock Indexes May 2023 tests, Residue stability tests, and | interrelated, but they do not show any

a Granger VAR causality model | hedging or safe-haven properties, particularly
in times of economic instability.

[27] Dirty Energy Stock Indexes and | 16 May 2018 to | Gregory and Hansen's | Clean energy stocks show potential as safe
Clean Energy Stock Indexes 15 May 2023 cointegration methodology and | havens for "dirty" cryptocurrencies, but

Forbes and Rigobon's t-test for | relationships vary depending on the specific
heteroscedasticity =~ of  two | assets and market conditions.
samples

[28] Green Equity Index, Traditional | 25 October 2016 | Network and Wavelet analyses Bitcoin is primarily isolated from green
Assets, and Non-Traditional | to 20 April 2021 equity indices and other assets, making it a
Assets robust diversification tool for investors,

particularly those seeking to offset the
environmental impact of Bitcoin investments.

[34] Green Financial Assets and | 3 January 2014 | Bivariate wavelet coherence | Cryptocurrency uncertainty/attention indices
Cryptocurrency to 31 December | approach have a predominantly negative relationship
Uncertainty/Attention Indices. 2021 with green financial asset returns over time.

[35] Case study of DONG Energy, a | 2010 to 2021 Case Study While challenging, oil and gas companies can
Danish company that successfully transition to clean energy by leveraging
transitioned to become Orsted, a internal strengths and responding to external
green energy company. pressures.
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A. Results of the DCC GARCH Model

This study applied the model developed by [36].
investigates the dynamic relationship between clean energy,
dirty energy, and clean cryptocurrency.

Fig. 3. Graphical depiction of log returns of markets

TABLE 3: DESCRIPTIVE STATISTICS OF THE CHOSEN
VARIABLE
Indices ADA SOL DICING SPGTCLEE
Variables Cardona Solana Natural Clean
Gas Energy
Min -0.26263 -0.55085 -0.18267 -0.10177
2 Max 0.3176 0.30098 0.13349 0.07441
Mean -0.00083 0.00033 -0.00177 -0.00048
Std Dev 0.05008 0.06912 0.04479 0.0182
Skewness 0.22189 -0.91395 -0.32599 0.17921
Kurtosis 6.32441 9.64895 0.81198 3.60895
Jarque 0 0 0 0
Bera Test
Adf'test (p- | 0.01%* 0.01** 0.01** 0.01**
value)

It has been chosen due to its advantages. For instance, the
model investigates dynamic investor behaviour regarding
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current events and news by identifying potential variations in
the asset's conditional correlations.

Table 4 exhibits the model’s outcomes. The spillover effects
between various asset class pairs are shown in the table. The
terms “mu” is the general mean and “omega” is the constants.
ARCH is represented by “alphal” and the GARCH by
“betal”. Alpha determines whether or not there is short-term
variance based on preceding disturbances. In contrast, “beta”
evaluates the persistence of volatility and it ascertains the
variations on long-term conditional correlation of the
market.[26] [37] The “alphal” and “betal” readings to show
volatility persistence should positive and significant at a level
of 5%. Both the parameters “alpha 1” and “beta 1” in both
series should be less than 1, are used to check for volatility
and determine whether or not time decay happened during
this time period.

Cardano to Solana's total of “alpha” is 0.869986 and “beta”
is 0.632210. This shows that in contrast to “rCardano”,
“rSolana” has a low volatility persistence. Additionally, there
is no short-term information spillover, as indicated by the
positive but insignificant coefficient of “dccal” of 0.087472.
On the other hand, the long-term significant and positive
coefficient of “dccbl” is 0.000000, indicating information
spillover. From “rCardano” to “rNaturalGas,” the total of
“alpha” is 0.869986 and total of “beta” is 0.947138.
“rCardano” has less volatility persistence when compared
“rNaturalGas”.

The positive but insignificant coefficient of “dccal”, which
is 0.086794, indicates that short-term information spillover is
not evident. The coefficient of “dccb1” is 0.000000, which is
significant and positive, signifying long-term information
spillover. Alpha and beta total 0.869986 and 0.467624 in
“rCardano” and  “rCleanEnergy”, respectively. It
demonstrates that, unlike “rCardano”, “rCleanEnergy” has
minimal volatility persistence. Additionally, there is no short-
term information spillover, as evidenced by the positive and
minimal coefficient of “dccal”, which is 0.018515.
Nevertheless, the coefficient of “dccbl” is 0.000000,
indicating a significant and favorable long-term information
spillover. The total of “alpha” is 0.632210 and total of “beta”
1s 0.947138, for “rSolana” and “rNaturalGas”. It indicates
that “rSolana” has lower volatility persistence than
“rNaturalGas”.

The coefficients for “dccal” and dcca2, indicating long-term
information spillover, are 0.999881 and 0.000000,
respectively. This reflects no information spillover in the
short term. The values of alpha and beta for “rSolana” and
“rCleanEnergy” are 0.467624 and 0.632210, respectively.
The findings indicate that “rCleanEnergy” shows reduced
volatility persistence in comparison to “rSolana”. In the
context of information spillover, the coefficient of “dccal” is
positive; however, it is insignificant.

The coefficient of “dccbl” is positive and statistically
significant, suggesting that information spillover manifests in
the long term rather than the short term. The values of alpha
and beta for “rNaturalGas” and “rCleanEnergy” are 0.947138

and 0.467624, respectively. It demonstrates
“rCleanEnergy”'s sustained low volatility in comparison to
“rNaturalGas”. Furthermore, there 1is no short-term

information spillover, since the “dccal” coefficient is
positive yet insignificant. In contrast, the “dccb1” coefficient
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is significant, indicating information spillover over the long
term.

V.

The dynamic relationships and volatility persistence between
clean cryptocurrencies, Cardano and Solana, the S&P Global
Clean Energy Index, and a dirty energy source, natural gas,
are examined in this paper. The research reveals a few
important observations regarding the relationship between
these assets. In contrast to the clean energy index, which has
a reduced volatility persistence and a different response to
shocks, clean cryptocurrency and dirty energy show that
shocks to their returns have a lasting effect on the market. To
investigate the dynamic conditional correlations between the
assets, DCC GARCH is utilized; the study reveals that the
long-term correlation among the assets is significant, whereas
the short-term correlation shows varied results for different
pairs of assets. Some pairs have shown considerable short-
term correlation. It was observed that clean cryptocurrencies,
particularly Solana, have shown intense volatility and have
significant correlations with both Clean Energy and Natural
Gas. Future research should examine how ESG
measurements affect the volatility and correlations between
clean cryptocurrencies, energy indices, and conventional
energy sources, given the increasing significance of
sustainability-backed ESG (Environmental, Social, and
Governance) considerations. Moreover, future studies might
improve the modelling and prediction of volatility and
correlations among various assets by integrating Al and
machine learning approaches. Longitudinal studies that
monitor the development of these markets over time would
yield important insights into how global economic trends,
regulatory changes, and technological breakthroughs affect
the relationships between clean energy, cryptocurrencies, and
traditional energy assets.

CONCLUSION AND FUTURE IMPLICATIONS

TABLE 4 — RESULTS OF DCC GARCH Model

Estimate | Std. t value Pr(>[t)
Error

DCC from Cardano to Solana

[“rCardano”].”mu” -0.00006 | 0.00201 | -0.03349 | 0.97328
[“rCardano”]."omega” | 0.00012 0.00011 | 1.08368 | 0.27850
[“rCardano”].”alphal” | 0.08103 0.03886 | 2.08497 | 0.03707
[“rCardano”].”betal” 0.86998 0.07296 | 11.9242 0.00000
[“rSolana”].”mu” 0.00118 0.00246 5.47906 0.63189
[“rSolana”].”omega” 0.00066 0.00026 | 2.46470 | 0.01371
[“rSolana™].”alphal” 0.24605 0.10415 | 2.36229 | 0.01816
[“rSolana™].”betal” 0.63221 0.10397 | 6.08035 | 0.00000
[Joint]”dccal” 0.04881 0.02856 | 1.70888 | 0.08747
[Joint]”dccb1” 0.79051 0.07944 | 9.95106 | 0.00000
DCC from Cardano to Natural Gas

[“rCardano”].”mu” -0.00006 | 0.00200 | -0.03372 | 0.97309
[“rCardano”].”omega” | 0.00012 0.00010 | 1.11559 | 0.26459
[“rCardano”].”alphal” | 0.08103 0.03852 | 2.10313 | 0.03545
[“rCardano”].”betal” 0.86998 0.07182 | 12.11194 | 0.00000




[“rNaturalGas™].”mu” -0.00116 | 0.00192 | -0.60626 | 0.54433 [“rNaturalGas™].”betal | 0.94713 0.01467 | 64.5537 | 0.00000
» 5
g”rNaturalGas 1.”omeg | 0.00002 | 0.00001 | 1.26130 | 0.20720 [“rCleanEnergy”]."mu” | -0.00041 | 0.00077 | -0.54048 | 0.58386
[“rNaturalGas™].”alpha | 0.04283 0.01329 | 3.22178 | 0.00127 [“rCleanEnergy”].”ome | 0.00010 | 0.00009 | 1.16929 | 0.24228
1” g
[“rNaturalGas™].”betal | 0.94713 0.01466 | 64.5682 | 0.00000 [“rCleanEnergy™].”alph | 0.20304 | 0.10780 | 1.88347 | 0.05963
» 4 al”
[Joint]”dccal” 0.01171 0.00683 | 1.71255 | 0.08679 [“rCleanEnergy™].”beta | 0.46762 | 0.35441 | 1.31942 | 0.18702
. kL) kL] 1”
[Joint]”dccbl 0.98262 | 0.00553 é;7.506 0.00000 Dot "decal” 0.00000 1 0.00001 | 0.00042 | 0.99966
DCC from Cardano to Clean Energy [Joint]’dccb1” 0.90214 0.10412 | 8.66383 0.0000
[“rCardano”].”mu” -0.00006 | 0.00200 | -0.03377 | 0.97305 DCC from Clean Energy to Natural Gas
[“rCardano”].”omega” | 0.00012 | 0.00011 | 1.09471 | 0.27364 [“rCleanEnergy”].”mu” | -0.00041 | 0.00077 | -0.54048 | 0.58886
[“rCardano”].”alphal” | 0.081032 | 0.03868 | 2.09484 | 0.03618 [“rCleanEnergy”].”ome | 0.00010 | 0.00009 | 1.16923 | 0.24231
= o ga”
[“rCardano”].”betal 0.86998 | 0.07314 ;1.8936 0.00000 [“rCleanEnergy”] "alph | 0.20304 | 0.10780 | 1.88341 0.05964
al”
[“rCleanEnergy”].”mu” | -0.00041 | 0.00077 | -0.53748 | 0.59093 [“rCleanEnergy”]."beta | 0.46762 035444 | 131933 0.18705
[“rCleanEnergy”].”ome | 0.00010 | 0.00009 | 1.15711 | 0.24722 17
ga” [“rNaturalGas™].”mu” -0.00116 | 0.00191 | -0.60675 | 0.54401
E[;ir”CleanEnergy”].”alph 0.20304 | 0.10894 | 1.86370 | 0.06236 [“rNaturalGas”]"omeg | 0.00002 | 0.00001 | 1.26320 | 0.20651
a”
[l”rCleanEnergy 1.”beta | 0.46762 0.35798 | 1.30627 0.19145 [“rNaturalGas™]."alpha | 0.04283 001327 | 3.22630 0.00125
. kL) ” 1”
[Joint]”dccal 0.06089 | 0.02585 | 2.35514 | 0.01851 [“rNaturalGas”]."betal | 0.94713 001467 | 645548 | 0.00000
[Joint]”dccb1” 0.81492 | 0.08313 | 9.80275 | 0.00000 ” 8
SCC oSl S e [Joint]”dccal” 0.00000 | 0.00002 | 0.00018 | 0.99985
tom Solana to Natural Gas
ol 00T o8 Toaaor o351 [Joint]”dccb1” 0.90214 | 0.10402 | 8.67270 | 0.00000
rSolana”].”mu” . . . .
DCC from Solana to Cardano
[“rSolana™].”omega” 0.00066 | 0.00026 | 2.47254 | 0.01341
[“rSolana™].”mu” 0.00118 0.00246 | 0.47906 | 0.63189
[“rSolana™].”alphal” 0.24605 0.10418 | 2.36176 | 0.01818
FSolna T ool Y 570395 T 608156 000000 [“rSolana™].”omega” 0.00066 | 0.00026 | 2.46470 | 0.01371
T IG' T (')00116 0'00191 660675 0'54401 [“rSolana”] "alphal” | 0.24605 | 0.10415 | 2.36230 | 0.01816
rNaturalGas™].”mu -0. . -0. .
[“rSolana™].”betal” 0.63221 0.10397 | 6.08036 | 0.00000
[“rNaturalGas”].”omeg | 0.00002 | 0.00001 | 1.26320 | 0.20651
a” [rCardona].”mu” -0.00006 | 0.00201 | -0.03349 | 0.97328
[{;rNaturalGas”].”alpha 0.04283 0.01327 | 3.22619 | 0.00125 [rCardona] "omega” 000012 | 000011 | 1.08372 | 027848
[“rNaturalGas™].”betal | 0.94713 0.01467 | 64.5534 | 0.00000 [rCardona).”alphal” 0.08103 0.03886 | 2.08498 | 0.03707
» 5
Doint]"dccal” 0.00000 | 0.00002 | 0.00014 | 0.99988 [rCardona].”betal” 0.86998 | 0.07295 | 11.9246 | 0.00000
7
Joint]”dceb1” 0.92724 | 0.16441 | 5.63976 | 0.00000 [Joint]”dccal” 0.04881 0.02856 | 1.70879 | 0.08748
DCC from Solana to Clean Energy [Joint]’dccb1” 0.79051 0.07941 | 9.95390 0.00000
[“rSolana”].”mu” 0.00118 0.00247 | 0.47715 0.63325 DCC from Natural Gas to Cardano
[“rSolana™].”omega” 0.00066 | 0.00026 | 2.46347 | 0.01376 [“rNaturalGas™].”mu” -0.00116 | 0.00192 | -0.60626 | 0.54433
[“rSolana™].”alphal” 0.24605 0.10435 | 2.35787 | 0.01838 [“rNaturalGas™].”omeg | 0.00002 | 0.00001 | 1.26130 | 0.20720
a”
[“rSolana™].”betal 0.63221 0.10451 | 6.04924 | 0.00000 [“rNaturalGas”]."alpha | 0.04283 001329 | 322178 | 0.00127
[“rCleanEnergy”].”mu” | -0.00041 | 0.00077 | -0.53796 | 0.59060 17
FrCToanE o 500010 000009 T Tiseos 024331 [“rNaturalGas”].”betal | 0.94713 0.01466 | 64.5682 | 0.00000
rCleanEnergy”].”ome | 0. . . . » 4
ga” [“rCardano”].”mu” -0.00006 | 0.00200 | -0.03372 | 0.97309
[“rCleanEnergy”].”alph | 0.20304 | 0.10789 | 1.88192 | 0.05984
al” [“rCardano”].”omega” | 0.00012 | 0.00010 | 1.11559 | 0.26459
[1‘:’rCleanEnergy”].”beta 0.46762 0.35503 | 1.31710 | 0.18780 [“rCardano”]."alphal” | 0.08103 0.03852 | 2.10312 0.03545
[Joint]”dccal” 0.08260 | 0.02963 | 2.78722 | 0.00531 [“rCardano™].”betal” 0.86998 0.07182 | 12.11194 | 0.00000
[Joint]”dccb1” 0.67703 | 0.15263 | 4.43576 | 0.00000 [Joint]”dccal” 0.01171 0.00683 | 1.71255 | 0.08679
DCC from Natural Gas to Clean Energy [Joint]’dccb1” 0.98262 0.00553 | 177.503 0.00000
7
[“rNaturalGas”].”mu -0.00116 | 0.00191 | -0.60675 | 0.54401 DCC from Clean Energy to Cardano
2[1‘,"rNaturalGas”].”omeg 0.00002 | 0.00001 | 1.26321 | 0.20651 [“rCleanEnergy”]."mu” | -0.00041 | 0.00077 | -0.53748 | 0.59093
[“rNaturalGas™].”alpha | 0.04283 0.01327 | 3.22624 | 0.00125 [“rCleanEnergy”].”ome | 0.00010 | 0.00009 | 1.15712 | 0.24722

17

”»

ga
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[“rCleanEnergy”].”alph | 0.203045 | 0.10894 | 1.86371 0.06236

al”

[“rCleanEnergy”].”beta | 0.46762 0.35797 | 1.30629 0.19145

1

[“rCardano”].”mu” -0.00006 | 0.00200 | -0.03377 | 0.97305

[“rCardano”].”omega” 0.00012 0.00011 | 1.09469 0.27365

[“rCardano”].”alphal” 0.08103 0.03868 | 2.09484 0.03618

[“rCardano”].”betal” 0.86998 0.07314 | 11.8935 0.00000
9

[Joint]”dccal” 0.06089 0.02585 | 2.35569 0.01848

[Joint]’dccb1” 0.81492 0.08320 | 9.79460 0.00000

DCC from Natural Gas to Solana

[“rNaturalGas”].”mu” -0.00116 | 0.00191 | -0.60675 | 0.54401

[“rNaturalGas”].”omeg | 0.00002 0.00001 | 1.26320 0.20651

e

[“rNaturalGas™].”alpha | 0.04283 0.01327 | 3.22626 0.00125

1

[“rNaturalGas™].”betal | 0.94713 0.01467 | 64.5538 0.00000

» 0

[“rSolana”].”mu” 0.00118 0.00248 | 0.47401 0.63548

[“rSolana”].”omega” 0.00066 0.00026 | 2.47254 0.01341

[“rSolana”].”alphal” 0.24605 0.10418 | 2.36176 0.01818
0

[“rSolana”].”betal” 0.63221 0.10395 | 6.08143 0.00000

[Joint]”dccal” 0.00000 0.00000 | 0.00177 0.99858

[Joint]”dccb1” 0.92724 0.16451 | 5.63626 0.00000

DCC from Clean Energy to Solana

[“rCleanEnergy”].”mu” | -0.00041 | 0.00077 | -0.53796 | 0.59060

[“rCleanEnergy”].”ome | 0.00010 0.00009 | 1.16699 0.24321

ga”

[“rCleanEnergy”].”alph | 0.20304 0.10789 | 1.88193 0.05984

al”

[“rCleanEnergy”].”beta | 0.46762 0.35503 | 1.31711 0.18780

1

[“rSolana”].”mu” 0.00118 0.00247 | 0.47716 0.63324

[“rSolana”].”omega” 0.00066 0.00026 | 2.46331 0.01376

[“rSolana”].”alphal” 0.24605 0.10435 | 2.35789 0.01837
0

[“rSolana”].”betal” 0.63221 0.10451 | 6.04903 0.00000
0

[Joint]”dccal” 0.08260 0.02962 | 2.78811 0.00530
0

[Joint]’dccb1” 0.67703 0.15294 | 4.42673 0.00001
0 0
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