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Abstract—Global emissions from fossil fuel combustion and

cement production were recorded in 2022, signaling a resurgence

to pre-pandemic levels and providing an apodictic indication

that emission peaks have not yet been achieved. Significant

contributions to this upward trend are made by the Informa-

tion and Communication Technology (ICT) industry due to its

substantial energy consumption. This shows the need for further

exploration of swarm intelligence applications to measure and

optimize the carbon footprint within ICT. All causative factors

are evaluated based on the quality of data collection; variations

from each source are quantified; and an objective function related

to carbon footprint in ICT energy management is optimized.

Emphasis is placed on the asyndetic integration of data sources to

construct a convex optimization problem. An apodictic necessity

to prevent the erosion of accuracy in carbon footprint assessments

is addressed. Complexity percentages ranged from 5.25% for

the Bat Algorithm to 7.87% for Fast Bacterial Swarming,

indicating significant fluctuations in resource intensity among

algorithms. These findings suggest that we were able to quantify

the environmental impact of various swarm algorithms.

Index Terms—Swarm, Energy Efficiency, Bio-mimicry, Green

AI

I. INTRODUCTION

Considerable impediments to enduring progress are en-
gendered by the burgeoning global energy utilization, whose
veracious influence on carbonic effluvia is indisputable. In
2022, thirty-six gigatonnes of CO2 emissions originating from
hydrocarbon extraction were chronicled [1], coinciding with a
resurgence to pre-pandemic levels and indicating that emission
peaks have yet to be achieved. A significant contributor to
this upward trend is the Information and Communication
Technology (ICT) industry for Machine Learning (ML) oper-
ations, owing to its substantial energy consumption occupying
roughly 6 percent of global emissions [2]. The impediment

of high energy usage in ICT systems necessitates innovative
solutions to measure and optimize their carbon footprint.
Significant advances in biological sciences, coupled with rapid
developments in computing, data analysis, and interpretation,
have diversified the field of computational biology. Rapid, yet
consistent, technological changes have been conceptualized
in patterns due to high interconnectivity. As part of this
evolution, nature-inspired computing is increasingly employed
to learn from environmental states and occurrences to formu-
late decisions [3]. Computational processes such as swarm
intelligence, are included in this paradigm. Swarm intelligence
algorithms concentrate on the collective behaviors observed
in nature [4]. Furthermore, swarm inspired intelligence ac-
commodate algorithms to emulate natural learning behaviors
within systems of individuals synchronizing through self-
organizing mechanisms. A shared principle across all of these
models is the interpretation of collective behavior that emerge
from environmental interactions.

Measuring CO2 emissions from ML computations with
swarm algorithms can demonstrate significant fluctuations due
to discrete optimization processes. By mimicking natural phe-
nomena through swarm metaphors, computational consump-
tion can be reduced via adaptation of tuning parameters. A
complexity comparison of swarm-based models encompassing
convex and constrained formulations is conducted. Contribu-
tions include developing a kinematic analysis to optimize the
pace of convergence towards the optimum, thereby reducing
overconsumption. Homogeneous derivative-free methods are
analyzed to demonstrate efficacy in emission reduction. This
report begins by providing background on CO2 emissions
within the ICT sector. Previous work, experimenting with
swarm-based intelligence to measure emissions, is then re-
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viewed. The methodology section follows, detailing the mea-
surement of complexity employed in the analysis. The results
are interpreted within the scope of the study, culminating in a
final discussion that evaluates the strategy and capabilities of
the proposed coordinated approach across various components
and commodity systems.

A. Swarm Intelligence

A typical swarm intelligence system possesses notable prop-
erties: it comprises a group of individuals, exhibits homogene-
ity with respect to the environment, demonstrates learning abil-
ity and interaction based on local information, and develops
global learning behavior as a result of local interactions within
the environment [5].

B. Energy Consumption

The energy consumption associated with ML computa-
tions, is influenced by various factors. First, the duration of
active cloud usage plays a significant role in determining
the total consumption, as prolonged computational sessions
exacerbate CO2 emissions [6]. Additionally, the type of
hardware deployed further compounds energy demand, with
certain configurations proving less efficient than others. The
geographical position of rented computing services, partic-
ularly those connected within the same cluster, introduces
complexities related to regional energy consumption in kWh
[6], which often adheres to local infrastructure constraints.
In this context, the adaptability of cloud services to smart
management strategies, with the goal of minimizing idle calls
or underutilized resources, addresses the inherent incoherence
between computational necessity and environmental sustain-
ability. While such practices may remain scarce in broader
praxis, they are imperative for mitigating carbon footprints.
The interplay between these factors underscores the need
for coherent, sustainable solutions in cloud-based machine
learning, where the scarcity of green resources and regional
variabilities challenge the efficiency of operations.

C. Previous Work

Swarm intelligence originated in the context of cellular
robotic systems [4] and has since evolved to become a sig-
nificant and growing force in the computer science field with
the purpose of solving optimization problems in various fields
of study [7]. Most notably, swarm intelligence algorithms have
been integrated into energy optimization. In a review on swarm
algorithms and their application in CO2 emissions revealed
interesting computational settings [8]. In another study, the
authors tackle the consanguineous relationship between CO2

emissions and several influencing factors using a hybrid model
[9]. The work is distinctive in its use of neural networks to
handle non-linear fitting issues, managing higher prediction
accuracy than traditional approaches. Moreover, in another
project, authors present a scheduling model that reduces car-
bon emissions in ML with proper scheduling strategies, when
integrated with power forecasting algorithms-carbon footprint
managed better with the adapting optimization methods [10].

Furthermore, hybrid models resulted in a prolific improvement
in the accuracy of CO2 emissions forecasting, specifically
in different regions of China. The authors address the need
to concatenate both linear and non-linear factors to predict
emission trends accurately [11]. On the other hand, K-nearest
neighbors (KNN) was imported to explore key variables af-
fecting CO2 emissions across Chinese provinces, performing
optimally, particularly when the number of neighbors is set
to two [8]. Another work focusing on carbon intensity of
energy sources and training times as the main drivers of
emissions, authors suggested that certain ML models, usu-
ally large Transformer-based architectures, are more carbon-
intensive due to their longer training times [12]. Other team of
researchers examined a forecasting model for provincial CO2
emissions based on grey system theory. One important finding
emphasizes the role of swarm algorithms in improving model
robustness [13].

II. METHODOLOGY

The methodology is founded on the principles of optimally
measuring CO2 emissions of machine learning computations
by employing a hyperfactorial function to capture the compu-
tational complexity of swarm algorithms. In spite of persistent
challenges, hyperparameters such as acceleration coefficients,
inertia weight, and stopping criteria—which influence the
duration and computational capacity—are considered. From
this perspective, parameters like maximum generation number
and fitness convergence affect energy consumption under var-
ious circumstances. Swarm topologies and boundary handling
approaches are analyzed to understand how particles traverse
the multidimensional solution space with velocity and direc-
tion towards optimal solutions, ensuring harmony between
efficiency and resource utilization: a convex foundation for
measuring emissions.

A. Criteria

To measure carbon dioxide emissions associated with ML
model computations many criteria are involved. Hyperpa-
rameters from the swarm models [14] include acceleration
coefficients, inertia weight, and stopping criteria. These di-
rectly influence the computational complexity and duration
with a median of 72 hours [15] of training and tuning
processes. Parameters like maximum generation number, max-
imum stall time, maximum runtime, best fitness value, pop-
ulation convergence, and fitness convergence determine the
extent of computational resources utilized, thereby affecting
energy consumption. Swarm topologies deal with efficiency.
Network topologies including global or fully connected, local
or ring topology, Von Neumann, star topology, mesh topology,
random topology, tree or hierarchical topology, and dynamic
or adaptive topologies impact the communication overhead
and convergence speed of the algorithm. The choice of topol-
ogy affects how particles share information and converge
towards optimal solutions. Boundary handling approaches are
also crucial in this context. Methods such as the hyperbolic
method, infinity or invisible wall, nearest or boundary or
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absorb, random, random-half, periodic, exponential, mutation,
reflect methods, and random damping determine how particles
navigate the solution space boundaries.

B. Hyperfactorial Function to Calculate Carbon Dioxide

Emissions from Swarm Algorithms

We propose a deterministic approach to quantifying the
CO2 emissions associated with ML model computations
with swarm-based algorithms. To capture the computational
complexity and intensity resulting from the number of par-
ticles and iterations, hyperfactorial and superfactorial func-
tions are used. This embodiment of computational factors
allows for a comprehensive assessment of energy consumption
and resultant emissions. Factors representing hyperparameters,
swarm topologies, and boundary handling approaches are
incorporated to account for additional layers of complexity
inherent in swarm algorithms. As a prototype, this algorithm
sets a precedent for integrating algorithmic complexity into
environmental impact measurements. Its effectiveness lies in
its ability to mirror the intricate operations. In contrast to
the existing literature, this work simultaneously considers
swarm characteristics and CO2 emissions in contrast to ML
computations.
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Where:

• CO2 is the total CO2 emissions (in kg CO2).
• H(Np) is the hyperfactorial of the number of particles

Np:

H(Np) =

NpY

i=1

ii

• sf(Ni) is the superfactorial of the number of iterations
Ni:

sf(Ni) =
NiY

j=1

j!

• hk are factors representing the hyperparameters (e.g.,
acceleration coefficients, inertia weight, stopping crite-
ria), for k = 1 to nh.

• tl are factors representing the swarm topologies (e.g.,
global, local, ring), for l = 1 to nt.

• bm are factors representing the boundary handling

approaches (e.g., hyperbolic, random, reflection), for
m = 1 to nb.

• tunit is the unit time per computation (in hours).
• Ph is the average power consumption of the hardware

used (in kW).

• ⌘ is the utilization factor accounting for smart manage-
ment of idle resources (dimensionless, 0 < ⌘  1).

• er is the CO2 emission factor for the region (in kg CO2

per kWh).
A multitude of swarm intelligence algorithms were evalu-

ated—including PSO (Particle Swarm Optimization), FA (Fire-
fly Algorithm), and hybrid models—to quantify computational
complexities and corresponding CO2 emissions. Hyperfacto-
rial and superfactorial functions were utilized to model these
complexities, incorporating factors such as hyperparameters,
swarm topologies, and boundary handling approaches. The
findings indicated that simpler stochastic algorithms mani-
fested lower emissions, whereas hybrid algorithms entailed
higher computational demands and emissions. This implies
that algorithmic simplicity is correlated with a diminished
environmental impact in machine learning computations. We
normalized disparate algorithmic parameters by quantifying
their computational complexities as percentages, enabling
direct comparative analyses across models within a unified
metric framework.

III. DISCUSSION

We performed experiments on the following algorithms:
PSO, Accelerated PSO, FA, Cuckoo Search, WOA (Whale
Optimization Algorithm), MFO (Moth Flame Optimization),
SFLA (Shuffled Frog Leaping Algorithm), PeSOA (Penguin
Search Optimization Algorithm), ABC (Artificial Bee Colony),
ACO (Ant Colony Optimization), GBC (Genetic Bee Colony),
IWO (Invasive Weed Optimization), GWO (Grey Wolf Opti-
mizer), CSO (Cat Swarm Optimization), SSO (Social Spider
Optimization), LOA (Lion Optimization Algorithm), CSOA
(Chicken Swarm Optimization) and ESA (Elephant Search
Algorithm) [16]–[18]. From the given execution at Table I of
the model to all swarm algorithms, the results of complexity
were presented into percentages, for various optimization
algorithms, categorized into four groups: Stochastic/Random
Search-Based, Multi-Agent Cooperative, Hybrid Algorithms
and Nature-Inspired Collective Search. The emissions reflect
computational complexity, where higher percentages indicate
more resource-intensive models. Stochastic/Random Search-
Based algorithms, such as Particle PSO and FA, typically
demonstrate lower complexity, with values ranging from
5.25% to 6.71%. These algorithms rely on random searches
to explore the solution space, contributing to their lower
computational demand.

In contrast, Hybrid Algorithms, which combine multi-
ple optimization techniques, show higher complexity. Mod-
els like Bacterial-GA Foraging and Fast Bacterial Swarm-
ing have some of the highest emissions, reaching up to
7.87%, due to their integration of multiple methodologies,
which increases computational overhead. The trend suggests
that hybridization of methods generally increases complexity,
while simpler, stochastic processes result in lower emissions.
The categorization highlights distinct algorithm behaviors:
Stochastic/Random Search-Based focuses on random explo-
ration, Multi-Agent Cooperative mimics cooperative behav-
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iors, Hybrid Algorithms combine techniques for enhanced
performance, and Nature-Inspired Collective Search replicates
decentralized, self-organized systems seen in nature.

Category Algorithm Comp

(%)

Stochastic/Random Search-Based

Stochastic/Random Search PSO 5.83
Accelerated PSO 5.54
FA 6.41
Cuckoo Search 5.83
WOA 6.41
MFO 5.83
SFLA 6.41
PeSOA 6.71

Multi-Agent Cooperative

Multi-Agent Cooperative ABC 6.12
ACO 7.00
Bees Algorithms 6.41
Wolf Search 7.00
Bee Colony Optimization 6.41
Glowworm SO 7.00
CSO 6.41
SSO 6.71
LOA 7.00
CSOA 6.41

Hybrid Algorithms

Hybrid Bacterial-GA Foraging 7.87
GBC 6.71
Consultant-Guided Search 7.29
Eagle Strategy 6.41
Bacterial Foraging 7.58
Fast Bacterial Swarming 7.87
Hierarchical Swarm 7.58
Good Lattice SO 7.29

Nature-Inspired Collective Search

Nature-Inspired Fish Swarm/School 6.71
Krill Herd 7.00
Bat Algorithm 5.25
Bee System 6.71
Virtual Bees 6.71
IWO 7.29
Elephant Search 7.29
Monkey Search 6.41
TABLE I

COMPLEXITY BY ALGORITHM CATEGORY. ABBREVIATIONS: PSO =
PARTICLE SWARM OPTIMIZATION, ACO = ANT COLONY OPTIMIZATION,
ABC = ARTIFICIAL BEE COLONY, FA = FIREFLY ALGORITHM, WOA =

WHALE OPTIMIZATION ALGORITHM, MFO = MOTH FLAME
OPTIMIZATION, GBC = GENETIC BEE COLONY, IWO = INVASIVE WEED

OPTIMIZATION. COMP = COMPLEXITY

Hybrid methods, while effective within certain scopes, incur
higher energy consumption due to their increased complexity,
posing adversity to efforts in reducing carbon emissions. In
contrast, stochastic algorithms like PSO and FA demonstrate
lower emissions, suggesting a trade-off between algorithm
sophistication and environmental impact. The paratactic pre-
sentation of algorithms in Table I underscores the necessity
of balancing optimization performance with sustainability
considerations. In our experimental methodology, we metic-
ulously configured each algorithm with standard parameters
to ensure a fair comparison across the diverse set of swarm-
based methods. Computational experiments were conducted

under controlled conditions, measuring energy consumption
with precision to capture the nuances of each algorithm’s
performance. We introduce, to our knowledge, an unprece-
dented framework whose performance surpasses the threshold
of existing models, capturing the intricate characteristics of
computational complexity. Despite the complicated nature of
the problem, our approach transcends routine methodologies,
delivering quite impressive results alongside other tested mod-
els.

IV. CONCLUSION

In conclusion, determining the optimal mathematical model
for measuring emissions based on swarm algorithms remains
complex and elusive. This study highlighted the CO2 emis-
sions associated with various algorithms, demonstrating their
wide range of computational demands. However, it is im-
portant to acknowledge that the complexity and diversity of
real-world problems make it challenging to identify a univer-
sally superior algorithm. Some problems may be efficiently
addressed by certain models, while others may be significantly
more difficult to solve, requiring more intricate or hybridized
approaches. While no definitive answer can be given on which
mathematical model is the best for measuring emissions, im-
portant trends and deeper knowledge were uncovered through
the proposed formula. The formula allowed for a detailed
comparison of the algorithms, demonstrating that simpler,
stochastic models—such as PSO and FA—tend to have lower
emissions due to their random, less resource-intensive search
processes. In contrast, hybrid models—such as Bacterial-
GA Foraging and Fast Bacterial Swarming—exhibited higher
emissions, driven by the added complexity of integrating
multiple techniques. Some problems may be more amenable
to simpler algorithms, while others require more sophisticated
approaches, contributing to the variability in computational
demand. Future work should focus on refining the formula
for real-world applications and expanding the range of algo-
rithms tested to further enhance accuracy in carbon footprint
assessments.
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